全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Chebyshev自褶积组合窗的有限差分算子优化方法

DOI: 10.6038/cjg20150224, PP. 628-642

Keywords: 有限差分,数值频散,窗函数,主旁瓣,自褶积,加权组合

Full-Text   Cite this paper   Add to My Lib

Abstract:

有限差分法广泛应用于地震波数值模拟、成像和波形反演中,差分数值解的精度直接影响着地震成像和反演的效果.因为有限差分算子可以通过截断伪谱法的空间褶积序列得到,而截断窗函数的属性影响有限差分算子逼近微分算子的精度.具体地讲,窗函数的幅值响应的主瓣和旁瓣决定了有限差分算子逼近的精度,主瓣越窄,旁瓣衰减越大,则有限差分算子逼近微分算子的精度越高,更好地压制数值频散.基于此认识,本文提出了一种基于Chebyshev自褶积组合窗截断逼近的有限差分算子优化方法.Chebyshev自褶积组合窗的主瓣较窄,且旁瓣衰减大,其可通过只调节三个参数,更直观和可视化地控制主瓣和旁瓣的形状,改变有限差分算子逼近微分算子的精度;该窗函数截断逼近的有限差分算子不仅有较大的谱覆盖范围,而且精度误差波动较小,这表明低阶的差分算子可以达到高阶算子的精度,且逼近误差更稳定;从经济上来讲,将有效地减少模拟计算花费,提高计算效率.

References

[1]  Alterman Z, Karal F C Jr. 1968. Propagation of elastic waves in layered media by finite difference methods. Bulletin of Seismological Society of America, 58(1): 367-398.
[2]  Boris J P, Book D L. 1973. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 11(1): 38-69.
[3]  Carcione J M, Kosloff D, Behle A, et al. 1992. A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media. Geophysics, 57(12): 1593-1607, doi: 10.1190/1.1443227.
[4]  Cheng B J, Li X F, Long G H. 2008. Seismic waves modeling by convolutional Forsyte polynomial differentiator method. Chinese J. Geophys. (in Chinese), 51(2): 531-537.
[5]  Chu C L, Stoffa P L. 2012. Determination of finite-difference weights using scaled binomial windows. Geophysics, 77(3): W17-W26, doi: 10.1190/GEO2011-0336.1.
[6]  Dablain M A. 1986. The application of high-order differencing to the scalar wave equation. Geophysics, 51(1): 54-66, doi: 10.1190/1.1442040.
[7]  Diniz P S R, da Silva E A B, Netto S L. 2012. Digital Signal Processing System Analysis and Design. Beijing: China Machine Press.
[8]  Dong L G, Ma Z T, Cao J Z, et al. 2000. A staggered-grid high-order difference method of one-order elastic wave equation. Chinese J. Geophys. (in Chinese), 43(3): 411-419.
[9]  Fornberg B. 1987. The pseudospectral method: Comparisons with finite differences for the elastic wave equation. Geophysics, 52(4): 483-501, doi: 10.1190/1.1442319.
[10]  Gazdag J. 1981. Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6): 854-859, doi: 10.1190/1.1441223.
[11]  Holberg O. 1987. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophysical Prospecting, 35(6): 629-655, doi: 10.1111/j.1365-2478.1987.tb00841.x.
[12]  Igel H, Mora P, Riollet B. 1995. Anisotropic wave propagation through finite-difference grids. Geophysics, 60(4): 1203-1216, doi: 10.1190/1.1443849.
[13]  Kelly K R, Ward R W, Treitel S, et al. 1976. Synthetic seismograms: A finite-difference approach. Geophysics, 41(1): 2-27, doi: 10.1190/1.1440605.
[14]  Kosloff D D, Baysal E. 1982. Forward modeling by a Fourier method. Geophysics, 47(10): 1402-1412, doi: 10.1190/1.1441288.
[15]  Lee C, Seo Y. 2002. A new compact spectral scheme for turbulence simulations. Journal of Computational Physics, 183(2): 438-469, doi: 10.1006/jcph.2002.7201.
[16]  Liu Y, Li C C, Mou Y G. 1998. Finite-difference numerical modeling of any even-order accuracy. OGP (in Chinese), 33(1): 1-10.
[17]  Liu Y, Sen M K. 2009a. A new time-space domain high-order finite-different method for the acoustic wave equation. Journal of Computational Physics, 228(23): 8779-8806, doi: 10.1016/j.jcp.2009.08.027.
[18]  Liu Y, Sen M K. 2009b. Numerical modeling of wave equation by a truncated high-order finite-difference method. Earthquake Science, 22(2): 205-213, doi: 10.1007/s11589-009-0205-0.
[19]  Liu Y, Sen M K. 2010. Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme. Geophysics, 75(3): A11-A17, doi: 10.1190/1.3374477.
[20]  Liu Y. 2013. Globally optimal finite-difference schemes based on least squares. Geophysics, 78(4): T113-T132, doi: 10.1190/geo2012-0480.1.
[21]  Pei Z L, Mou L G. 2003. A staggered-grid high-order difference method for modeling seismic wave propagation in inhomogeneous media. Journal of China University of Petroleum (Edition of Natural Science) (in Chinese), 27(6): 17-27.
[22]  Robertsson J O A, Blanch J O, Symes WW, et al. 1994. Galerkin-wavelet modeling of wave propagation: Optimal finite-difference stencil design. Mathematical and Computer Modelling, 19(1): 31-38, doi: 10.1016/0895-7177(94)90113-9.
[23]  Yan H Y, Liu Y. 2013a. Visco-acoustic prestack reverse-time migration based on the time-space domain adaptive high-order finite-difference method. Geophysical Prospecting, 61(5): 941-954, doi: 10.1111/1365-2478.12046.
[24]  Yan H Y, Liu Y. 2013b. Pre-stack reverse-time migration based on the time-space domain adaptive high-order finite-difference method in acoustic VTI medium. Journal of Geophysics and Engineering, 10(1): 015010, doi: 10.1088/1742-2132/10/1/015010.
[25]  Yang D H, Teng J W. 1997. FCT finite difference modeling of three-component seismic records in anisotropic medium. OGP (in Chinese), 32(2): 181-190.
[26]  Yang L, Yan H Y, Liu H. 2014. Least squares staggered-grid finite-difference for elastic wave modelling. Exploration Geophysics, 45(4): 255-260, doi: 10.1071/EG13087.
[27]  Zhang J H, Yao Z X. 2013. Optimized finite-difference operator for broadband seismic wave modeling. Geophysics, 78(1): A13-A18, doi: 10.1190/GEO2012-0277.1.
[28]  Zhou B, Greenhalgh S A. 1992. Seismic scalar wave equation modeling by a convolutional differentiator. Bulletin of the Seismological Society of America, 82(1): 289-303.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133