全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2009 

基于Morse势函数的含金属双原子分子的热力学性能计算(英)

Keywords: 物理化学,双原子分子,Morse势,密度泛函理论,热容,

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用密度泛函B3LYP方法在6-311G(d,p)、LANL2DZ-6-311G(d,p)和SDD水平上优化和计算了含金属(Cu,Fe,Pb,Cr,Sn,Ge)双原子分子的平衡几何结构、简谐振动频率和温度在300K到5000K时的热容和熵,并采用自编的Fortran程序(基于Morse势函数的方法),计算了上述双原子分子的热容和熵。计算结果表明,基于Morse势函数的方法得到的CuO,CuCl,FeO和CrO的热容和熵,与文献中的结果一致,其中最大偏差为0.7J·K-1·mol-1;计算的GeX,SnX和PbX(X=S,Se,Te)的热容和熵与文献值的最大偏差为0.75%。

References

[1]  Safarov M M, Zaripova M A, Radzhabov F S. Thermal capacity of aqueous aerozine solutions as a function of temperature and pressure [ J ]. Measurement Techniques, 1996,39 (5) : 540 - 554.
[2]  Midda S,Bera N C,Bhattacharyya I,et al. Ab initio and density functional theory study of spectroscopic properties of CuO and CuS[ J]. J Mol Strut(theochem) ,2006,761 : 17 - 20.
[3]  Jacobs M H,Hack K,Hallstedt B. Heat balances and heat capacity calculations[ J]. J Solid State Electrochem ,2007, 11 : 1399 - 1404.
[4]  Konings R J, Mihenburg J C,Genderen A C. Heat capacity and entropy of monoclinic Gd2O3 [ J ]. y Chem Thermodynamics, 2005,37: 1219 - 1225.
[5]  Johari G P. Determining vibrational heat capacity and thermal expansivity and their change at glass-liquid transition [ J].J Chem Phys, 2007,126 : 114901 - 114904.
[6]  LI Quan, LU Hong, WANG Hong-yan,ct al. The theoretical calculation of potential energy functions and thermodynamic functions for the ground state of PuN [ J ]. Chinese Journal of Chemical Physics ,2003, 16(2) : 99 -102.
[7]  CHENG Nai-liang, NIU Si-tong, XU Gui-ying, et al. Barin. Thermochemical data of pure substances[ M]. Beijing: Science Press,2003.
[8]  Boo W O,Stout J W. Heat capacity and entropy of CuF2 and CrF2 from 10 to 300 K, anomalies associated with magnetic ordering and evaluation of magnetic contributions to the heat capacity[J]. J Chem Phys,1979,71 (1) : 9 - 16.
[9]  Stφlen S, Glockner R,Gronvold F,et al. Heat capacity and thermodynamic properties of nearly stoichiomctric wustitc from 13 to 450 K[ J]. American Mineralogist, 1996,81 : 973 - 981.
[10]  Ben-Amotz D,Widom B. Generalized solvation heat capacities[ J]. J Phys Chem B,2006,110 : 19839 - 19849.
[11]  Dandekar D K,Tsou J J,Ho J C. Low- temperature heat capacities of orthorhombic and cubic PbF: [J].J Phys Rev B,1979,20(8) : 2523 - 2525.
[12]  Likhachev V N, Vinogradov G A. Anomalous heat capacity of nanoparticles[ J]. Phys Lett A,2006,357 : 236 -239.
[13]  Jalbout A F, Li X H. Analytical potential energy functions and theoretical spectroscopic constants for MX/MX ( M = Ge,Sn, Pb , X = O,S, Se,Tc, Po) and LuA ( A = H, F) systems: density functional theory calculations[ J]. J Quantum Chem,2007,107 : 522 -539.
[14]  Kayi H,Clark T. AM1 * parameters for copper and zinc[J]. J Mol Model,2007,13 : 965 -979.
[15]  Frisch M J,Trucks G W,Schlegel H B,et al. Gaussian 03, Gaussian, Inc. : Pittsburgh, PA ,2003.
[16]  Atkins P W. Physical Chemistry[M]. Forth Edition. Oxford: Oxford University Press, 1990. Chapter 16.
[17]  .[EB/OL].www. gaussian.com/g_whitepap/thermo.htm [ J/OL ],.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133