全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2009 

PBX有效弹性性能研究进展

Keywords: 固体力学,高聚物粘结炸药(PBX),细观力学,配方设计,有效性能,体积模量,剪切模量

Full-Text   Cite this paper   Add to My Lib

Abstract:

高聚物粘结炸药(PBX)是一种颗粒高度填充的含能复合材料,其单质炸药晶体的体积百分含量通常达到了85%以上。在室温和低应变率条件下,炸药晶体与粘结剂两相模量对比可达3~4个数量级,PBX的这两个特点使传统复合材料相关理论不再适用。因此,PBX有效弹性性能的模拟与预测对复合材料力学和细观力学提出了巨大挑战。本文介绍了国内外在PBX有效弹性性能模拟与预测方面所进行的工作,对各种预测方法的优缺点以及应用前景进行了简要的评述,指出了PBX有效性能模拟与预测需要解决的问题以及下一步工作的重点。

References

[1]  Bedrov D,Ayyagari C,Smith G D. Molecular dynamics simulations of HMX crystal polymorphs using a flexing molecule force field. 1999, Personal Communication.
[2]  Hashin Z. The elastic moduli of heterogenerous materials[J]. Appl Mech, 1962,29 : 143 - 150.
[3]  Markov K Z. Elementary micromeehanics of heterogeneous media. In Heterogeneous Media[J]. Micromechanics Modeling Methods and Simulations ,2000 : 1 - 162.
[4]  Berryman J G,Berge P. Critique of two explicit schemes for estimating elastic properties of muhiphase composites[J]. Mech Mater, 1996,22 : 149 - 164.
[5]  Jun S,Jasiuk I. Elastic moduli of two-dimensional composites with sliding inclusions-a comparison of effective medium theories [J]. Int Solids Struct, 1993,30 : 2501 - 2523.
[6]  杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.116-203.
[7]  Christensen R M, Lo K H. Solutions for effective shear properties in three sphere and cylinder models [J]. Mech Phys Solids, 1979,27 : 315 - 330.
[8]  Adams D F, Doner D F. Transverse normal loading of a unidirectional compsite [J]. Composite Materials, 1967,11:152 - 164.
[9]  Adams D F,Doner D F. Longitudinal shear loading of a unidirectional composlte[J]. Composite Materials,1967,11 : 4 - 17.
[10]  Adams D F,Tsai S W. The influence of random filament packing on the transverse stiffness of unidirectional composites [J]. Composite Materials, 1969,3 : 368 - 381.
[11]  Adams D F,Crane D A. Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading [J].Gomputers and Structures, 1984,18 : 1153 - 1164.
[12]  刘文辉 张新民 张淳源.微观结构对复合材料弹性有效性能的影响[J].工程力学,2005,22(6)增刊:16-19.
[13]  Biswajit Banerjee, Daniel O Adams. Mieromechanics-based determination of effective elastic properties of polymer bonded explosives [J]. Physica B,2003,338 : 8 - 15.
[14]  Biswajit Banerjee,Daniel O Adams. On predicting the effective elastic properties of polymer bonded explosives using the recursive cell methods[J]. Solid and structure,2004,41 : 481 - 509.
[15]  Biswajit Banerjee. Micromechanies-based prediction of themoelastic properties of high energy materials [D]. Utah: The University of Utah, 2002.
[16]  Hill R. Elastic properties of reinforced solids: some theoretical principles[J]. Mech Phys Solids,1963,11 : 357 -372.
[17]  Hashin Z, Strikman S. A variational approach to the theory of the elastic behavior of muhiphase materials[J]. Mech Phys Solids, 1963, 11: 137-140.
[18]  Milton G W. Bounds on the electromagnetic,elastic and other properties of two-composite materials [J]. Int Engng Sci, 1981,8 : 542 - 545.
[19]  Mishnaevsky L L, Sehmauser S. Continuum mesomechanical finite element modeling in materials development : A state-of-the-art review [J]. Appl Mech Rev,2001,54: 49 -66.
[20]  Pecullan S, Gibiansky L V,Torquato S. Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites[J]. Mech Phys Solids, 1999,47 : 1509 - 1542.
[21]  Holliday L,Thackray G. Heterogeneity in complex materials and the concept of the representative cell[J]. Nature, 1964,2011 : 270 - 272.
[22]  Sab K. On the homogenization and the simulation of random materials [J]. European Mech A/Solids, 1992,11 : 585 - 607.
[23]  Jia S,Povirk G L. Modeling the effects of reinforcement distribution on the elastic properties of composite materials[J]. Modeling Simul Mater Sei Eag, 16 : 587 - 602.
[24]  Ramakrishnan N, Kumar A M,Radhakrishna Bhat B V. A generalized plane strain technique for estimating effective properties of particulate metal matrix composites using FEM [J ]. Materials Science, 1996,31 : 3507 - 3512.
[25]  Day A R,Snyder K A, Garboezi E J, et al. The elastic moduli of a sheet containing circular holes [J]. Mech Phys Solids, 1992,40 : 1031 - 1051.
[26]  Toi Y, Kiyoshe T. Damage mechanics models for brittle microcracking solids based on three-dimensional mesoscopic simulations [J]. Engg Fracture Mech, 1995,50 : 11 - 27.
[27]  Rizzo F J, Shippy D J. A formulation and sotution procedure for the general non-homogeneous inclusion problem[J].It Solids Struct, 1968,4:1161 - 1179.
[28]  Theocaris P S,Stavroulakis G E,Panagiotopoulos P. Negative Poisson\\'s ratio in composites with star-shaped inclusions: A numerical homogenization approach [J]. Arch Appl Mech, 1997,67 : 274 - 286.
[29]  Achenbach J D, Zhu H. Effect of interfacial zone on mechanical behavior and failure of fiber-reinfored composites [J]. Mech Phys Solids, 1989,37 : 381 - 393.
[30]  Moulinec H,Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure [J]. Comput Methods Appl Mech Engrg , 1998,157 : 69 - 94.
[31]  Gusev A A. Representative volume element size for elastic composites: a numerical study[J]. Mech Phys Solids, 1997,45: 1449 -1459.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133