全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2009 

固体推进剂激光点火性能研究综述

DOI: 10.3969/j.issn.1006-9941.2009.04.028

Keywords: 物理化学,固体推进剂,激光点火,点火延迟时间,综述

Full-Text   Cite this paper   Add to My Lib

Abstract:

激光点火的研究近年来已成为一个热门的研究课题,采用激光作为刺激源研究固体推进剂点火性能是因为激光输出能量高且可调、点火时间和能量可控制且不受环境因素限制,而固体推进剂点火性能的研究对揭示固体推进剂的燃烧机理,验证点火模型具有非常重要的意义。本文主要描述了固体推进剂激光点火性能研究的理论过程、表征方法以及试验装置,并对影响固体推进剂激光点火性能的诸多因素如激光能量、推进剂组分及含量、点火环境等因素进行了详细的阐述,最后对固体推进剂激光点火性能研究需要注意的问题进行了总结,并附参考文献50篇。

References

[1]  Vilyunov V N,Zarko VE. Ignition of Solids[M]. New York: Elsevier Science Publishers, 1989.
[2]  Ali A N,Son S F,Sander R K,et al. Ignition dynamics of high explosives[R]. AIAA 99 -0862.
[3]  Weinrottera M, Kopeceka H, Wintnera E, et al. Application of laser ignition to hydrogen-air mixtures at high pressures[J]. International Journal of Hydrogen Energy, 2005,30 : 319 - 326.
[4]  Phuoe T X. Laser-induced spark ignition fundamental and applications [J]. Optics and Lasers in Engineering,2006,44 : 351 - 397.
[5]  Ulas A,Kuo K K . Laser-induced ignition of solid propellants for gas generators[J]. Fuel,2008,87 : 639 -646.
[6]  Risha G A, Kuo K K, Koch D E, et al. Laser ignition characterization of N-5 double-base solid propellants [J]. Combustion of Energetic Material,2002 : 284 - 295.
[7]  Hanson-Parr D M, Parr T P. RDX laser-assisted flame structure[C]// 31st JANNAF Combustion Subcommittee Meeting, Sunnyvale, California, 1994,2:407-423.
[8]  Fetherolf B L, Litzinger T A. CO2 laser-induced combustion of ammonium dinitramide (ADN)[J]. Combustion and Flame, 1998,114: 515 -530.
[9]  Liau Y C, Lyman J L. Modeling laser-induced ignition of nitramine propellants with condensed and gas-phase absorption[J]. Combustion Science and Technology, 2002,174 ( 3 ) : 141 - 171.
[10]  Kim J U,Torikat T, Kuo K K. Ignition dynamics of nitramine composite propellants under CO2 laser heating[R]. AIAA 87 -0564.
[11]  Tang C J,Lee Y,Litzinger T A. Simultaneous temperature and species measurements of the glycidyl azide polymer (GAP) propellant during laser-induced decomposition [J]. Combustion and Flame, 1999,117 : 244 - 256.
[12]  Beckstead M W. A comparison of solid monopropellant combustion and modeling[R]. AIAA 97 -0586.
[13]  Singh M, Kumar R, Kumar L, et al. Laser ignition of propellants[C]// Proceedings of the 33rd International Pyrotechnics Seminar. Fort Collins, Colorado, 2006 : 1 - 11.
[14]  江治 李疏芬 赵凤起 陈沛 阴翠梅 李上文.纳米镍粉对高氯酸铵热分解的影响[J].推进技术,2003,24(5):460-463.
[15]  李疏芬 牛和林.NEPE推进剂激光点火特性[J].推进技术,2002,23(2),4:172-175.
[16]  Kim J U, Kim J U, Koo F H, et al. Comparislon of ignition characteristics of a series of RDX-based composite propellants under rapid pressurization[R]. AIAA85 - 1175.
[17]  Atwood A I, Bogga T L, Curran P O, et al. Burning rate of solid propellant ingredients,part Ⅰ: Pressure and initial temperature effects[J]. J Propulsion Power, 1999,15 ( 6 ) : 740 - 747.
[18]  Williams F A. Theory of propellant ignition by heterogeneous reaction [R]. AIAA J1966,4:1354 -1357.
[19]  Price E W,Bradley Jr H H, Dehority G L, et al. Theory of ignition of solid propellants[R]. AIAA J 1966,4 : 1153 - 1181.
[20]  Baer S D,Ryan N W. An approximate but complete model for the ignition response of solid propellants[R]. AIAA J 1968,6 : 872 - 877.
[21]  Kulkarni A K,Kumar M,Kuo K K. Review of solid propellant ignition studies[R]. AIAA J 1982,20 : 243 - 244.
[22]  Waldman C H,Summerfield M. Theory of propellant ignition by heterogeneous reaction[R]. AIAA J 1969,7 : 1359 - 1361.
[23]  Bradley Jr H H. Theory of ignition of a reactive solid by constant energy flux [J]. Combustion Science and Technology, 1970,2 : 11 - 20.
[24]  Bradley Jr H H, Williams F A. Theory of radiant and hypergolie ignition of solid propellant[J]. Combustion Science and Technology, 1970,2:41 -52.
[25]  Hermance C E,Kumar B. K. Gas phase ignition theory for homogeneous propellants under shock tube conditions [R]. AIAA J 1970,8: 1551 - 1558.
[26]  Waldman C H. Theory of heterogenous ignition [J]. Combustion Science and Technology, 1970,2 : 81 - 93.
[27]  Andersen W H. Theory of surface ignition with application to cellulose,exploslves, and propellants [J]. Combustion Science and Technology, 1970,2 : 213 - 221.
[28]  Kumar R K,Hermance C E. Ignition of homogeneous solid propellants under shock tube conditions[R]. AIAA J 1971,9: 1615 - 1620.
[29]  Kumar R K, Hermance C E. Gas phase ignition theory of a heterogeneous solid propellant[J]. Combustion Science and Technology, 1972,4: 191 - 196.
[30]  Kindelan M,Williams F A. Gas-phase ignition of a solid with in-depth absorption of radiation[J]. Combustion Science and Technology, 1977, 16:47-58.
[31]  Andersen W H. Analysis of ignition behavior of M2 propellants[J]. Combustion Science and Technology, 1972,5 : 43 - 46.
[32]  Ritchie S, Thynell S, Kuo K K. Modeling and experiments of laser- indueed ignition of nitramine propellants [J]. J Propulsion Power, 1997,13(3) : 367 -374.
[33]  Liau Y C, Kim E S, Yang V. A comprehensive analysis of laser- induced ignition of RDX monopropellant[J]. Combustion and Flame, 2001,126 : 1680 - 1698.
[34]  Lee Y J,Tang C J,Kudva G,et al. The near-surface gas-phase structure of RDX during CO2 laser-assisted combustion[C]//32nd JANNAF Combustion Meeting, Huntsville, Alabama,1995.
[35]  Hanson-Parr D M,Parr T P. RDX flame structure[C]//25th Symposium (International) on Combustion, The Combustion Institute, Irvine, California, 1994:1635-1643.
[36]  Parr T P,Hanson-Parr D M. RDX, HMX, and XM39 self-deflagration flame structure[C]//32nd JANNAF Combustion Meeting, Huntsville, Alabama, 1995.
[37]  Litzinger T A, Fetherolf B L, Lee Y J, et al. Study of the gas-phase chemistry of RDX: Experiments and modeling [J]. J Propulsion Power, 1995,11 (4) : 698 - 703.
[38]  Tang C J,Lee Y J,Kudva G,et al. A study of the gas-phase chemical structure during CO2 laser-assisted combustion of HMX [J]. Combustion and Flame, 1999,117 : 170 - 188.
[39]  Meredith K V, Beekstead M W. Laser-induced ignition modeling of HMX[C] //39th JANNAF Combustion Meeting, Colorado Springs, Colorado, 2003.
[40]  Beckstead M W, Puduppakkam K, Thakre P, et al. Modeling of combustion and ignition of solid-propellant ingredients[J]. Progress in Energy and Combustion Science,2007,33 : 497 - 551.
[41]  Kubota N ,Sonobe T,Yamamoto A ,et al. Burning rate characteristics of GAP propellants[J]. J Propulsion Power, 1990,6 : 686 - 689.
[42]  Kubota N. Combustion of energetic azide ploymers[J]. J Propulsion Power, 1995,11 (4) : 677 - 682.
[43]  Korobeinichev O P, Kuibida L V, Volkov E N, et al. Mass spectrometric study of combustion and thermal decomposition of GAP [J]. Combustion and Flame,2002,129:136 - 150.
[44]  Arisawa H, Brill T B. Thermal decomposition of energetic materials 71: Structure-decomposition and kinetic relationships in flash of glyeidyl azide polymer (GAP) [J]. Combustion and Flame, 1998, 112:533 - 544.
[45]  徐浩星 王桂兰 贾淑霞 等.丁羟推进剂激光点火延迟时间研究[J].固体火箭技术,2000,23(1):40-43.
[46]  江治 李疏芬 李凯 等.含纳米米粉的推进剂点火实验及燃烧性能研究[J].固体火箭技术,2004,27(2):117-120.
[47]  江治 赵凤起 等.纳米金属粉对HMX热分解特性的影响[J].推进技术,:.
[48]  Yu S, Hieh W H, Kuo K K. Ignition of nitramine propellants under rapid pressurization[R]. AIAA83 - 1194.
[49]  Haas Y,Eliahu Y B,Welner S. Infrared laser-induced decomposition of GAP [J]. Combustion and Flame, 1994,96 : 212 - 220.
[50]  Tang C J,Lee Y J,Litzinger T A. The chemical and thermal processes of GAP/nitramine pseudo-propellants under CO2 laser heating[C]// 34th JANNAF Combustion Meeting, West Palm Beach, Florida, 1997 : 491 - 504.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133