全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2011 

电性拓扑状态指数预测硝基类含能材料静电感度

DOI: 10.3969/j.issn.1006-9941.2011.06.005

Keywords: 有机化学,硝基类含能材料,静电感度,电性拓扑状态指数,定量结构-性质相关性

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用电性拓扑状态(ElectrotopologicalState,E-state)指数模拟分析了16种硝胺类化合物和34种硝基芳烃化合物的静电感度。用多元线性回归的方法对两组物质建立定量结构-性质相关(QSPR)模型,硝胺类化合物模型的相关系数和标准偏差分别为0.782和0.217,硝基芳烃化合物模型的相关系数和标准偏差分别为0.717和0.195。模型分析表明:原子类型电性拓扑状态指数与硝基类含能材料静电感度有较好的相关性,可有效对硝基类含能材料静电感度进行预测;同时,电性效应是影响静电感度的重要因素。

References

[1]  刘尚和, 李宏建, 刘直承, 等. 静电理论与防护[M]. 北京: 兵器工业出版社, 1999. LIU Shang-he, LI Hong-jian, LIU Zhi-cheng, et al. Electrostatic theory and protection[M]. Beijing: Weapon Industry Press, 1999.〖JP〗
[2]  王桂香, 肖鹤鸣, 居学海, 等. 含能材料的密度、爆速、爆压和静电感度的理论研究[J]. 化学学报, 2007, 65(6): 517-524. WANG Gui-xiang, XIAO He-ming, JU Xue-hai, et al. Theoretical studies on densities, detonation velocities and pressures and electric spark sensitivities of energetic materials[J]. Acta Cheimica Sinica, 2007, 65(6): 517-524.
[3]  Mohammad H K. Theoretical prediction of electric spark sensitivity of nitroaromatic energetic compounds based on molecular structure[J]. Journal of Energetic Materials, 2008, 153: 201-206.
[4]  Mohammad H K, Hamid R P, Abolfazl S. Simple way to predict electrostatic sensitivity of nitroaromatic compounds[J]. Chemistry, 2008, 17(6): 470-484.
[5]  Zeman V, Jirí KOCí, Zeman S. Electric spark sensitivity of polynitro compounds: Part Ⅱ. A correlation with detonation velocities of some polynitro arenes[J]. Chinese Journal of Energetic Materials, 1999, 7(3): 127-133.
[6]  Hall L H, Kier L B. Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information[J]. Journal of Chemical Information and Computer Science, 1995, 35(6): 1039-1045.
[7]  Hall L H, Story C T. Boiling point and critical temperature of a heterogeneous data set: QSAR with atom type electrotopological state indices using artificial neural networks[J]. Journal of Chemical Information and Computer Science, 1996, 36(5): 1004-1014.
[8]  Huuskonen J. QSAR modeling with the electrotopological state indices: Predicting the toxicity of organic chemicals[J]. Chemosphere, 2003, 50(7): 949-953.
[9]  PAN Yong, JIANG Jun-cheng, WANG Rui, et al. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological state indices[J]. Journal of Hazardous Materials, 2008, 157: 510-517. 
[10]  潘勇, 蒋军成. 电性拓扑状态指数预测烃类物质闪点[J]. 石油学报(石油加工), 2007, 23(6): 70-74. PAN Yong, JIANG Jun-cheng. Prediction of Flash Point of Hydrocarbon by Electrotopological State Indices[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2007, 23(6): 70-74. 
[11]  王睿, 蒋军成, 潘勇, 等. 均三硝基苯类化合物撞击感度与电性拓扑指数的QSPR研究[J]. 含能材料, 2008, 16(1): 90-93. WANG Rui, JIANG Jun-cheng, PAN Yong, et al. QSPR study of correlation between impact sensitivity of m-nitroaromatics and electrotopological state indices[J]. Chinese Journal of Energetic Materials, 2008, 16(1): 90-93. 
[12]  王睿, 蒋军成, 潘勇, 等. 电性拓扑状态指数预测硝基类含能材料撞击感度[J]. 固体火箭技术, 2008, 31(6): 657-662. WANG Rui, JIANG Jun-cheng, PAN Yong, et al. Prediction on impact sensitivity of nitro energetic materials by means of electrotopological state indices[J]. Journal of Solid Rocket Technology, 2008, 31(6): 657-662.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133