全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2011 

金属配合物类炸药的爆轰性能计算及数值模拟

DOI: 10.3969/j.issn.1006-9941.2011.05.013

Keywords: 物理化学,Cowan状态方程,VLW状态方程,JWL状态方程,高氯酸[四氨·双(5-硝基四唑)]合钴(Ⅲ)(BNCP),高氯酸·四氨·双叠氮基合钴(Ⅲ)(DACP)

Full-Text   Cite this paper   Add to My Lib

Abstract:

拟合了高氯酸[四氨·双(5-硝基四唑)]合钴(Ⅲ))(BNCP)、高氯酸·四氨·双叠氮基合钴(Ⅲ)(DACP)以及四氨·双(3,5-硝基三唑)合铜(Ⅱ)三种金属配合物炸药的固体爆轰产物Co和Cu的Cowan状态方程参数和热力学函数系数,利用VLW爆轰产物状态方程程序计算了其爆速、爆压等爆轰参数值,同时根据计算得到的等熵膨胀数据拟合出它们的JWL状态方程参数,并利用LS-DYNA有限元程序对炸药驱动飞片进行了数值模拟。结果显示,计算得到的爆轰参数值与文献给出的实验数据基本吻合,偏差在4%以内。

References

[1]  吴雄,龙新平,何碧,等. VLW爆轰产物状态方程[J]. 中国科学,2008,38(12): 1129-1132.WU Xiong,LONG Xin-ping,HE Bi,et al. VLW equation of state for detonation products[J]. Science in China,2008,38(12): 1129-1132.
[2]  龙新平. VLW爆轰产物状态方程及纳米级铝粉含铝炸药爆轰特性研究[D]. 北京: 北京理工大学,1999. LONG Xin-ping. Research on VLW EOS and the detonation properties of nano-powder aluminized explosives[D]. Beijing: Beijing Institute of Technology,1999.
[3]  盛涤伦,马凤娥,孙飞龙,等. BNCP起爆药的合成及其主要性能[J]. 含能材料,2000,8(3): 100-103.SHENG Di-lun,MA Feng-e,SUN Fei-long,et al. Study on synthesis and main properties of BNCP[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2000,8(3): 100-103.
[4]  盛涤伦,马凤娥. 新型起爆药DACP的合成及其主要性能[J]. 含能材料,2006,14(3): 161-165.SHENG Di-lun,MA Feng-e. Synthesis and main properties of new initiating explosive DACP[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2006,14(3): 161-165.
[5]  Huynh M V,Michael A H. Preparation and explosive properties of tetraamminebis (3,5-dinitro-1,2,4-triazolato-N1) copper (Ⅱ)[J]. Journal of Energetic Materials(Hanneng Cailiao),2005,23(1): 27-32.
[6]  Mader C L. Numerical Modeling of Detonation[M]. Berkeley: California Press,1979.
[7]  Smirnov A V,Ilyushin M A,Tselinsky. Laser initiation of complex perchlorates of d-metals with heterocyclic ligands[C]∥Proceeding of the 3rd International Autumn Seminar on Propellants,Explosive and Pyrotechnics. Chengdu,China,1999.
[8]  Fyfe D W,Fronabarger J W. BNCP prototype detonator studies using a semiconductor bridge initiator. SAND94-0336C[R]. 1994.
[9]  Mezierea Y,Milletta J C F,Bourne N K. The effect of cobalt additions on the shock response of nickel[J]. International Journal of Impact Engineering,2007,34: 360-376.
[10]  Touloukian Y S. Thermoplysical Properties of Matter,Vol 12[M]. Thermo Expansion,IFI/Plenum: New York,1975. 
[11]  Kurt Banmung,Hansjoachim Bluhm. Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures[J]. International Journal of Impact Engineering,2001,25: 631-639.
[12]  Mader C L. Numerical Modeling of Explosives and Propellants[M]. Berkeley: California Press,1998. 
[13]  Vaullerin M,Espagnacq M. Reparametrization of the BKW equation of state for the trizoles and comparison of the detonation properties of HMX,TNMA and NTO by means of semiempirical calculations[J]. Propellants,Explosives,Pyrotechnics,1998(23): 73-76. 
[14]  Chase M W. NIST-JANAF Thermochemical Tables[M]. American Chemical Society and the American Institute of Physics for the National Institute of standards and Technology: New York,1971.
[15]  曹仕瑾. 叠氮肼镍的结构与性能[D]. 南京: 南京理工大学,2007.CAO Shi-jin. Configuration and performance of nickel hydrazine aside[D]. Nanjing: Nanjing University of Science and Technology,2007. 
[16]  David R B. Through bulkhead initiator studies. SAND974582 UC-742[R]: 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133