全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

仿生射流表面孔径与射流速度耦合减阻特性数值模拟

DOI: 10.3969/j.issn.1006-7043.201105068

Keywords: 仿生射流表面, 摩擦阻力, 数值模拟, 减阻机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对仿生射流表面流场问题,基于非光滑表面减阻的仿生学理论,对鲨鱼鳃裂部位射流特征进行分析研究,建立具有类似于鲨鱼腮裂部位射流特征的仿生射流表面模型及可拓模型. 利用SST k-ω湍流模型对仿生射流表面模型进行数值模拟,在主流场速度为20 m/s时,分析了不同射流孔径与不同射流速度耦合情况对壁面摩擦阻力、压差阻力及减阻率的影响,并对仿生射流表面减阻机理进行分析. 研究表明在射流孔为5 mm时与射流速度耦合情况下的平均减阻率最大,为11.566%,同时为仿生射流表面多因素耦合情况下的减阻特性研究奠定基础.

References

[1]  张成春, 任露泉, 王晶, 等. 旋成体仿生凹坑表面流场控制减阻仿真分析 [J]. 兵工学报, 2009, 30(8): 1066-1071. ZHAGN Chengchun, REN Luquan, WANG Jing, et al. Simulation on flow control for drag reduction of revolution body using bionic dimpled surface [J]. Acta Armamentar, 2009, 30(8): 1066-1071.
[2]  BECHERT D W, BRUSE M, HAGE W. Experiments with three-dimensional riblets as an idealized model of shark skin [J]. Experiments in Fluids, 2000, 28(5): 403-412.
[3]  FISH F E. The myth and reality of Gray’s paradox: implication of dolphin drag reduction for technology [J]. Bioinspiration & Biomimetics, 2006, 1(2): 17-25.
[4]  耿湘人, 桂业伟, 王安龄, 等. 利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究 [J]. 空气动力学学报, 2006, 24(1): 85-89. GENG Xiangren, GUI Yewei, WANG Anling, et al. Numerical investigation on drag and heat-transfer reduction using 2-D planar and axisymmetrical forward facing jet [J]. Acta Aerodynamica Sinica, 2006, 24(1): 85-89.
[5]  ZHAO Gang, GU Yunqing, ZHENG Jinxing, et al. The study of the small drag reduction testing platform [C] // 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce. Piscataway, USA, 2011: 6021-6024.
[6]  ZHAO Gang, GU Yunqing, ZHENG Jinxing, et al. A testing platform based on bionics drag reduction theory for friction resistance [J]. Communications in Information Science and Management Engineering, 2012, 2(5): 34-39.
[7]  GU Yunqing, ZHAO Gang, ZHENG Jinxing, et al. Experiment study and numerical simulation on drag reduction characteristic of bionic jetting surface [C] // 2012 International Conference on Maritime Technology. London, 2012: 195-199.
[8]  谷云庆. 减阻测试实验装置结构设计及仿真分析 [D]. 哈尔滨: 哈尔滨工程大学, 2010: 31-68. GU Yunqing. The structure design and simulation analysis of the drag reduction testing device [D]. Harbin: Harbin Engineering University, 2010: 31-68.
[9]  MEYER B, NELSON H F, RIGGINS D W. Hypersonic drag and heat-transfer reduction using a forward-facing jet [J]. Journal of Aircraft, 2001, 38(4): 680-686.
[10]  ESWAR J, MARK P, WILLIAM B B. Applications of a counterflow drag reduction technique in high-speed systems [J]. Journal of Spacecraft and Rockets, 2002, 39(4): 605-614.
[11]  ZHAO Gang, ZHAO Hualin, SHU Haisheng, et al. Simulation study of bionic jetting direction influence on drag reduction effect [J]. Advances in Nature Science, 2010, 3(2): 17-26.
[12]  李承晓, 李卫华. 租房可拓策略生成系统 [J]. 智能系统学报, 2011, 6(3): 272-278. LI Chengxiao, LI Weihua. Research on tenement extension strategy generation system [J]. CAAI Transactions on Intelligent Systems, 2011, 6(3): 272-278.
[13]  洪筠, 钱志辉, 任露泉. 多元耦合仿生可拓模型及其耦元分析 [J]. 吉林大学学报:工学版, 2009, 39(3): 726-730. HONG Jun, QIAN Zhihui, REN Luquan. Extensive model of multi-factor coupling bionics and analysis of coupling elenents [J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39(3): 726-730.
[14]  CATALANO P, AMATO M. An evaluation of RANS turbulence modeling for aerodynamic applications [J]. Aerospace Science and Technology, 2003, 7(7): 493-509.
[15]  MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598-1605.
[16]  郝维, 刘正先, 陈丽英. 方腔涡流运动对压力脉动噪声影响的数值分析 [J]. 哈尔滨工程大学学报, 2012, 33(4): 501-506. HAO Wei, LIU Zhengxian, CHEN Liying. Numerical analysis of a pressure pulse with a vortex around a submerged cavity [J]. Journal of Harbin Engineering University, 2012, 33(4): 501-506.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133