|
哈尔滨工程大学学报 2013
利用半监督近邻传播聚类算法实现P2P流量识别DOI: 10.3969/j.issn.1006?7043.201209007, PP. 654-657 Keywords: PP流量识别,半监督聚类,近邻传播,机器学习,网络安全 Abstract: 为了解决利用少量标记样本实现准确的P2P流量识别,提出了一种基于半监督近邻传播(AP)聚类算法的P2P流量识别方法.首先对少量样本进行标记,然后在聚类过程中为标记样本和非标记样本设置不同的参考度,使标记样本能够优先成为类代表点,进而通过样本间的消息加权更新完成聚类,最后按照相应的“标记?类别映射”规则实现对P2P流量的识别.研究了参考度与消息加权更新对识别性能的影响,实验结果显示:当标记样本的比例为5%时,对P2P流量的识别准确率高于90%,误识别率低于3%;当标记样本的比例达到15%后,识别准确率高于95%,最高可达98%,而误识别率则低于1%;识别性能随标记样本比例的提高而提高.
|