全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用半监督近邻传播聚类算法实现P2P流量识别

DOI: 10.3969/j.issn.1006?7043.201209007, PP. 654-657

Keywords: PP流量识别,半监督聚类,近邻传播,机器学习,网络安全

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解决利用少量标记样本实现准确的P2P流量识别,提出了一种基于半监督近邻传播(AP)聚类算法的P2P流量识别方法.首先对少量样本进行标记,然后在聚类过程中为标记样本和非标记样本设置不同的参考度,使标记样本能够优先成为类代表点,进而通过样本间的消息加权更新完成聚类,最后按照相应的“标记?类别映射”规则实现对P2P流量的识别.研究了参考度与消息加权更新对识别性能的影响,实验结果显示:当标记样本的比例为5%时,对P2P流量的识别准确率高于90%,误识别率低于3%;当标记样本的比例达到15%后,识别准确率高于95%,最高可达98%,而误识别率则低于1%;识别性能随标记样本比例的提高而提高.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133