Cystic neoplasms of the pancreas are increasingly recognized due to the frequent use of abdominal imaging. It is reported that up to 20% of abdominal cross-sectional scans identify incidental asymptomatic pancreatic cysts. Proper characterization of pancreatic cystic neoplasms is important not only to recognize premalignant lesions that will require surgical resection, but also to allow nonoperative management of many cystic lesions that will not require resection with its inherent morbidity. Though reliable biomarkers are lacking, a wide spectrum of diagnostic modalities are available to evaluate pancreatic cystic neoplasms, including radiologic, endoscopic, laboratory, and pathologic analysis. An interdisciplinary approach to management of these lesions which incorporates recent, specialty-specific advances in the medical literature is herein suggested. 1. Introduction With improvements in abdominal radiologic imaging, incidental pancreatic cystic neoplasms are increasingly discovered in as many as 20% of patients undergoing computed tomography (CT) or magnetic resonance imaging (MRI) for nonpancreatic indications. The proper management of these lesions is critical [1–5]. The differential diagnoses for incidental pancreatic cystic lesions include the following: (1) benign serous cystadenoma or (2) premalignant mucinous cystic lesions, which are categorized into mucinous cystic neoplasm (MCN), branch duct intraductal papillary mucinous neoplasm (BD-IPMN), main duct IPMN (MD-IPMN), or mixed IPMN. Based on the histologic type, pancreatic cystic neoplasms may have low or high risk for malignant transformation. Unfortunately, the imaging characteristics of pancreatic cysts can be similar, making differentiation between benign and premalignant conditions difficult. In addition, current cyst fluid analysis techniques fail to clearly distinguish among the cysts. The definitive classification of pancreatic cysts is crucially important since precancerous lesions may require surgical resection, while others that are benign or indolent can be observed. An interdisciplinary approach incorporating medical pancreatology, therapeutic endoscopy, and pancreatic surgery is critical to the evaluation of patients with cystic neoplasms of the pancreas. We provide a brief overview of the clinical problem followed by interdisciplinary management algorithms based on the current literature, including recent guidelines from the major gastrointestinal and surgical societies. 2. Clinical and Pathologic Features Unlike most hepatic and renal cysts, pancreatic cystic lesions raise
References
[1]
K. S. Spinelli, T. E. Fromwiller, R. A. Daniel et al., “Cystic pancreatic neoplasms: observe or operate,” Annals of Surgery, vol. 239, no. 5, pp. 651–659, 2004.
[2]
A. C. Planner, E. M. Anderson, A. Slater, J. Phillips-Hughes, H. K. Bungay, and M. Betts, “An evidence-based review for the management of cystic pancreatic lesions,” Clinical Radiology, vol. 62, no. 10, pp. 930–937, 2007.
[3]
X. M. Zhang, D. G. Mitchell, M. Dohke, G. A. Holland, and L. Parker, “Pancreatic cysts: depiction on single-shot fast spin-echo MR images,” Radiology, vol. 223, no. 2, pp. 547–553, 2002.
[4]
F. Campbell and B. Azadeh, “Cystic neoplasms of the exocrine pancreas,” Histopathology, vol. 52, no. 5, pp. 539–551, 2008.
[5]
N. V. Adsay, A. Andea, O. Basturk, N. Kilinc, H. Nassar, and J. D. Cheng, “Secondary tumors of the pancreas: an analysis of a surgical and autopsy database and review of the literature,” Virchows Archiv, vol. 444, no. 6, pp. 527–535, 2004.
[6]
M. A. Khashab, E. J. Shin, S. Amateau et al., “Tumor size and location correlate with behavior of pancreatic serous cystic neoplasms,” American Journal of Gastroenterology, vol. 106, no. 8, pp. 1521–1526, 2011.
[7]
G. H. Sakorafas, V. Smyrniotis, K. M. Reid-Lombardo, and M. G. Sarr, “Primary pancreatic cystic neoplasms revisited. Part I: serous cystic neoplasms,” Surgical Oncology, vol. 20, no. 2, pp. e84–e92, 2011.
[8]
G. H. Sakorafas, V. Smyrniotis, K. M. Reid-Lombardo, and M. G. Sarr, “Primary pancreatic cystic neoplasms revisited: part II. Mucinous cystic neoplasms,” Surgical Oncology, vol. 20, no. 2, pp. e93–e101, 2011.
[9]
R. P. Reddy, T. C. Smyrk, M. Zapiach et al., “Pancreatic mucinous cystic neoplasm defined by ovarian stroma: demographics, clinical features, and prevalence of cancer,” Clinical Gastroenterology and Hepatology, vol. 2, no. 11, pp. 1026–1031, 2004.
[10]
C. Fernandez-del Castillo and A. L. Warshaw, “Cystic tumors of the pancreas,” Surgical Clinics of North America, vol. 75, no. 5, pp. 1001–1016, 1995.
[11]
G. Kl?ppel, Histological Typing of Tumours of the Exocrine Pancreas, Springer, 1996.
[12]
E. Solcia, C. Capella, G. Kl?ppel, Pathology AFIo, Research UAf, and Pathology Ei, Tumors of the Pancreas, Armed Forces Institute of Pathology, 1997.
[13]
K. Takuma, T. Kamisawa, H. Anjiki et al., “Predictors of malignancy and natural history of main-duct intraductal papillary mucinous neoplasms of the pancreas,” Pancreas, vol. 40, no. 3, pp. 371–375, 2011.
[14]
H. Maguchi, S. Tanno, N. Mizuno et al., “Natural history of branch duct intraductal papillary mucinous neoplasms of the pancreas: a multicenter study in Japan,” Pancreas, vol. 40, no. 3, pp. 364–370, 2011.
[15]
T. Papavramidis and S. Papavramidis, “Solid pseudopapillary tumors of the pancreas: review of 718 patients reported in english literature,” Journal of the American College of Surgeons, vol. 200, no. 6, pp. 965–972, 2005.
[16]
S. Reddy and C. L. Wolfgang, “Solid pseudopapillary neoplasms of the pancreas,” Advances in Surgery, vol. 43, no. 1, pp. 269–282, 2009.
[17]
W. R. Brugge, K. Lewandrowski, E. Lee-Lewandrowski et al., “Diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst study,” Gastroenterology, vol. 126, no. 5, pp. 1330–1336, 2004.
[18]
L. A. Van Der Waaij, H. M. Van Dullemen, and R. J. Porte, “Cyst fluid analysis in the differential diagnosis of pancreatic cystic lesions: a pooled analysis,” Gastrointestinal Endoscopy, vol. 62, no. 3, pp. 383–389, 2005.
[19]
A. Khalid, M. Zahid, S. D. Finkelstein et al., “Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study,” Gastrointestinal Endoscopy, vol. 69, no. 6, pp. 1095–1102, 2009.
[20]
M. S. Sawhney, S. Devarajan, P. O'Farrel et al., “Comparison of carcinoembryonic antigen and molecular analysis in pancreatic cyst fluid,” Gastrointestinal Endoscopy, vol. 69, no. 6, pp. 1106–1110, 2009.
[21]
Y. C. Kim, J. Y. Choi, Y. E. Chung et al., “Comparison of MRI and endoscopic ultrasound in the characterization of pancreatic cystic lesions,” American Journal of Roentgenology, vol. 195, no. 4, pp. 947–952, 2010.
[22]
A. J. Megibow, M. E. Baker, R. M. Gore, and A. Taylor, “The incidental pancreatic cyst,” Radiologic Clinics of North America, vol. 49, no. 2, pp. 349–359, 2011.
[23]
A. Khan, F. Khosa, and R. L. Eisenberg, “Cystic lesions of the pancreas,” American Journal of Roentgenology, vol. 196, no. 6, pp. W668–W677, 2011.
[24]
C. Molvar, A. Kayhan, H. Lakadamyali, and A. Oto, “Nonneoplastic cystic lesions of pancreas: a practical clinical, histologic, and radiologic approach,” Current Problems in Diagnostic Radiology, vol. 40, no. 4, pp. 141–148, 2011.
[25]
S. Gourgiotis, M. P. Ridolfini, and S. Germanos, “Intraductal papillary mucinous neoplasms of the pancreas,” European Journal of Surgical Oncology, vol. 33, no. 6, pp. 678–684, 2007.
[26]
D. V. Sahani, R. Kadavigere, A. Saokar, C. Fernandez-del Castillo, W. R. Brugge, and P. F. Hahn, “Cystic pancreatic lesions: a simple imaging-based classification system for guiding management,” Radiographics, vol. 25, no. 6, pp. 1471–1484, 2005.
[27]
S. S. Garud and F. F. Willingham, “Molecular analysis of cyst fluid aspiration in the diagnosis and risk assessment of cystic lesions of the pancreas,” Clinical and Translational Science, vol. 5, no. 1, pp. 102–107, 2012.
[28]
A. Das, S. Ngamruengphong, S. Nagendra, and A. Chak, “Asymptomatic pancreatic cystic neoplasm: a cost-effectiveness analysis of different strategies of management,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 690–699.e6, 2009.
[29]
SSAT Patient Care Guidelines, “Cystic neoplasms of the pancreas,” Journal of Gastrointestinal Surgery, vol. 11, no. 9, pp. 1225–1227, 2007.
[30]
M. Tanaka, C. Fernandez-del Castillo, V. Adsay, S. Chari, M. Falconi, J. Y. Jang, et al., “International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas,” Pancreatology, vol. 12, no. 3, pp. 183–197, 2012.
[31]
B. M. Weinberg, B. M. R. Spiegel, J. S. Tomlinson, and J. J. Farrell, “Asymptomatic pancreatic cystic neoplasms: maximizing survival and quality of life using Markov-based clinical nomograms,” Gastroenterology, vol. 138, no. 2, pp. 531–540, 2010.
[32]
A. Khalid and W. Brugge, “ACG practice guidelines for the diagnosis and management of neoplastic pancreatic cysts,” American Journal of Gastroenterology, vol. 102, no. 10, pp. 2339–2349, 2007.
[33]
L. L. Berland, “The American College of Radiology strategy for managing incidental findings on abdominal computed tomography,” Radiologic Clinics of North America, vol. 49, no. 2, pp. 237–243, 2011.
[34]
M. H. G. Katz, M. M. Mortenson, H. Wang et al., “Diagnosis and management of cystic neoplasms of the pancreas: an evidence-based approach,” Journal of the American College of Surgeons, vol. 207, no. 1, pp. 106–120, 2008.
[35]
S. Vyas, S. Markar, T. M. Ezzat, and A. Ajit, “Cystic lesions of the pancreas: current trends in approach and management,” Postgraduate Medical Journal, vol. 87, no. 1025, pp. 207–214, 2011.
[36]
P. J. Allen, L. X. Qin, L. Tang, D. Klimstra, M. F. Brennan, and A. Lokshin, “Pancreatic cyst fluid protein expression profiling for discriminating between serous cystadenoma and intraductal papillary mucinous neoplasm,” Annals of Surgery, vol. 250, no. 5, pp. 754–759, 2009.
[37]
B. B. Haab, A. Porter, T. Yue et al., “Glycosylation variants of mucins and CEACAMs as candidate biomarkers for the diagnosis of pancreatic cystic neoplasms,” Annals of Surgery, vol. 251, no. 5, pp. 937–945, 2010.
[38]
J. DeWitt, “Endoscopic ultrasound-guided pancreatic cyst ablation,” Gastrointestinal Endoscopy Clinics of North America, vol. 22, no. 2, pp. 291–302, 2012.
[39]
L. S. Lee, P. A. Banks, A. M. Bellizzi, N. I. Sainani, V. Kadiyala, S. Suleiman, et al., “Inflammatory protein profiling of pancreatic cyst fluid using EUS-FNA in tandem with cytokine microarray differentiates between branch duct IPMN and inflammatory cysts,” Journal of Immunological Methods, vol. 382, no. 1-2, pp. 142–149, 2012.
[40]
S. Nissim, G. E. Idos, and B. Wu, “Genetic markers of malignant transformation in intraductal papillary mucinous neoplasm of the pancreas: a meta-analysis,” Pancreas. In press.
[41]
L. G. Lim, T. Itoi, W. C. Lim, S. J. Mesenas, D. W. Seo, J. Tan, et al., “Current status on the diagnosis and management of pancreatic cysts in the Asia-Pacific region: role of endoscopic ultrasound,” Journal of Gastroenterology and Hepatology, vol. 26, no. 12, pp. 1702–1708, 2011.
[42]
J. Wu, H. Matthaei, A. Maitra et al., “Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development,” Science Translational Medicine, vol. 3, no. 92, Article ID 92ra66, 2011.
[43]
T. Furukawa, Y. Kuboki, E. Tanji, S. Yoshida, T. Hatori, M. Yamamoto, et al., “Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas,” Science Reports, vol. 1, p. 161, 2011.