Dvorak V F. Tropical cyclone intensity analysis using satellite data[R]. Washington DC,NESDIS 11:NOAA,1984.
[2]
Katsaros K B,Forde E B,Chang P,et al. QuikSCAT\'s sea winds facilitates early identification of tropical depressions in 1999 hurricane season[J]. Geophysical Research Letters,2001,28(6):1043-1046.
[3]
Ryan J S,Mark A,James J B,et al. Early detection of tropical cyclones using SeaWinds-derived vorticity[J]. Bulletin of the American Meteorological Society,2002,83(6): 879-889.
[4]
Pasch R J,Stewart S R,Brown D P. Comments on "early detection of tropical cyclones using seawindsderived vorticity"[J]. Bulletin of the American Meteorological Society,2003,85(10):1415-1416.
[5]
Lecomte P,Crapolicchio R L,de Miguel S. Cyclone tracking with ERS-2 Scatterometer: Algorithm Performances and Post-Processed Data Example[C]//Gothenburg: Proceeding of the Envisat & ERS Symposium Gothenburg,2000.
[6]
Gierach M M,Bourassa M A,Cunningham P. Vorticity-Based Detection of Tropical Cyclogenesis[J]. Journal of Applied Meteorology & Climatology,2007,46 (8):1214-1229.
[7]
Ho S S,Talukder A. Automated cyclone identification from remote quikscat satellite data[C]//Big Sky,MT: IEEE Aerospace Conference,2008.
[8]
Talukder A,Ho S S,Liu T,et al. Global Cyclone Detection and Tracking using Multiple Remote Satellite Data[OL]. http://esto.nasa.gov/conferences/estc2008/ papers/Talukder_Ashit_A1P1.pdf 图5 热带气旋自动识别实验结果 Fig.5 Automated cyclone identification results using algorithm developed in this paper