ZIERENBERG R A, SHANKS W C Ⅲ.Isotopic studies of epigenetic features in metalliferous sediment, Atlantis Ⅱ Deep,RedSes[J]. Can Mineral, 1988, 26:737~753.
[2]
SHANKS W C Ⅲ, NIEMITZ J. Sulfur isotope studies of hydrothermal anhydrite andpyrite[Z]. Initial Reports of the Deep Sea Drilling Project[R], 1982, 64:1 137~1 142.
[3]
PETER J M, SHANKS W C Ⅲ. Sulfur, carbon, and oxygen isotope variations insubmarine hydrothermal deposits of Guaymas Basin, Gulf of California[J]. Gosochim CeochimActa, 1992, 56:2 025~2 040.
[4]
DUCKWORTH R, FALLICK A E, RICKARD D. Mineralogy and sulfur isotope composition ofthe Middle Valley massive sulfide deposit, northern Juan de Fuca Ridge[J]. Proc ODP SciResults, 1994, 139:373~385.
[5]
BLUTH G J, OHMOTO H. Sulfide-sulfate chimneys on the East Pacific Rise, 11@and13@N latitudes[J]. PART Ⅱ: sulfur isotopes. Can Mineral, 1988, 26:505~515.
[6]
ARNOLD M, SHEPPARD S M F. East Pacific Rise atlatitude 21@N:isotopic compositionand origin of the hydrothermal sulfur[J]. Earth Planet Sci Lett, 1981, 56:148~156.
[7]
ZIERENBERG R, SHANKS W C Ⅲ, BISCHOF F J. Massive sulfide deposits at 21@NEPR:chemical composition, stable isotopes, and phase equilibria[J]. Geol Soc Am Bull,1984, 95:922~929.
[8]
ALT J C. The chemistry and sulfur isotope composition of massive sulfide andassociated deposits on Green Seamount, Eastem Pacific[J]. Econ Geol, 1988, 83:1 026~1033.
[9]
KERRIDGE J, HAYMON R M, KASTNER M. Sulfur isotope systematics at the 21@ N site,East Pacific Rise[J]. Earth Planet Sci Lett, 1983, 66:91~100.
[10]
KASE K, YAMAMOTO M, SHIBATA T. Copper-rich sulfide deposit near 23@ N,Mid-Atlantic Ridge: chemical composition, mineral chemistry and sulfur isotopes[J]. ProcODP Sci Results, 1990, 106/109:163~177.
[11]
CHIBA H, UCHIYANA N, TEAGLE D A H. Stable isotope study of anhydrite and sulfideminerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26@ N[J]. Proc ODP SciResults, 1998, 158:85~90.
[12]
KAWAHATA H, SHIKAZONO N. Sulfur isotope and total sulfur studies of basalts andgreenstones from DSDP Hole504B, Costa Rica Rift: implications for hydrothermalalteration[J]. Can Mineral, 1988, 26:555~565.
[13]
ALTJC, ANDERSON T F, BONNELLL. The geochemistry of sulfur in a 1 . 3 km section ofhydrothermal altered oceanic crust, DSDP HoleS04B[J]. Geochim Cosmochim Acta, 1989, 53: 1011~1 023.
[14]
HERZIG P M, HANNINGTON M D, ARRIBAS A Jr. Sulfur isotopic composition ofhydrothermal precipitates from the Lau back-arc: implications for magmatic contributionsto seafloor hydrothermal systems[J]. Mineral Deposita, 1998, 33:226~237.
[15]
BOWERS T S. Stable isotope signatures of water-rock interaction in mid-ocesn ridgehydrothermal systems: sulfur, oxygen, and hydrogen[J]. J Geophys Res, 1989, 94:5 775~5786.
[16]
BUTTERFIEL D D A,MASSOTH G J. Geochemistry of north deft segment vent fluids:temporal changes in chlorinity and their possible relation to recent volcanism[J]. JGeophys Res, 1994, 99:4 951~4 968.
[17]
FOUQUET Y, VON S U, CHARLOU J L, et al. Metallogenesis in back-arc environments:the Lau Basin example[J].Econ Geol, 1993, 88:2 154~2 181.
[18]
CHARLOU J L, DONVAL J P, JEAN-Baptiste P, et al. Gases and helium isotopes in hightemperature solutions sampled before and after ODP Leg 158 drilling at TAG hydrothermalfield(26° N, MAR)[J]. Geophys Res Lett, 1996, 23:3 491~3 494.
[19]
GAMO T, CHIB A H, MASUDA H, et al. Chemical characteristics of hydrothermal fluidsfrom the TAG mound of the mid-Atlantic Ridge in August 1994: implications for spatial andtemporal variability of hydrothermal activity[J]. Geophys Res Lett, 1996, 23:3 483~3486.
[20]
BLUM N, PUCHELT H. Scdimentary-hosted polymetallic massive sulfide deposits of theKebrit and Shaban Deeps, Red Sea[J]. Miner Deposits, 1991, 26:217~227.
[21]
KOSKI R A, LONSDALE P F, SHANKS W C Ⅲ, et al. Mineralogy and geochemistry of asediment hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin,Gulf of California[J]. J Geophys Res, 1985, 90:6 695~6 707.
[22]
KOSKI R A, SHANKS W C Ⅲ, BOHRSON W A, et al. The composition of massive sulfidedeposits from the sedimentcovered floor of E scanaba Trough, Gorda Ridge: implications fordepositional processes[J]. Can Mineral, 1988, 26:655~673.
[23]
ZIERENBERG R A, KOSKI R A, MORTON J L, et al. Genesis of massive sulfide depositson a sediment-covered spreading center, Escansba Trough, Southern Gorda Ridge[J]. EconomicGeology, 1993, 88:2 069~2 098.
[24]
STUART F M, DUCKWORTH R, TURNER G, et al. Helium and sulfur isotopes in sulfidesfrom the Middle Valley,northern Juan de Fuca Ridge[J]. Proc ODP Sci Results, 1994, 139:387~392.
[25]
ZIERENBERG R A. Sulfur content of sediment and sulfur isotope values of sulfideand sulfate minerals from Middle Valley[J]. Proc ODP Sci Results, 1994, 139:739~748.
[26]
GOODFELLOW W D, FRANKLIN J M. Geology, mineralogy, and chemistry ofsediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan deFuca Ridge[J]. Fcon Geol, 1993, 88:2 037~2 068.
[27]
HANNINGTON M D, SCOTT S D. Mineralogy and geochemistry of a hydrothermalsilica-sulfide-sulfate spire in the Caldera of Axial Seamount, Juan de Fuca Ridge[J]. CanMineral, 1988, 26:603~625.
[28]
SHANKS W C Ⅲ , SEYFRIED W E Jr. Stable isotope studies of vent fluids andchimney minerals, southem Juan de Fuca Ridge: sodium metasomatism and sea water sulfatereduction[J]. J Geophys Res, 1987, 92:11 387~11 399.
[29]
HEKINIAN R, FEVRIER M, BISCHOFF J L, et al. Sulfide deposits from the East PacificRise, 21@N[J]. Science,1980, 207:1 433~1 444.
[30]
WOODRUFF L G, SHANKSWC Ⅲ. Sulfur isotope study of chimney minerals andhydrothermal fluids from 21@ N, East Pacific Rise: hydrothermal sulfur sources anddisequilibrium sulfate reduction[J]. J Geophys Res, 1988, 93:4 562~4 572.
[31]
KNOTT R, FOUQUET Y, HONNOREZ J, et al. Petrology of hydrothermal mineralization:avertical section through the TAG mound[J]. Proc ODP Sci Results, 1998, 158: 5~26.
[32]
HERZIG P M, PETERSEN S, HANNINGTON M D. Geochemistry and sulfur-isotopiccomposition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26@ N[J]. Proc ODP SciResults, 1998, 158:47~70.
[33]
GEMMELL J B, SHARPE R. Detailed sulfur-isotope investigation of the TAGhydrothermal mound and stockwork zone,26@ N, Mid-Atlantic Ridge[J]. Proc ODP Sci Results,1998, 158:71~84.
[34]
KUSAKABE M, MAYEDA S, NAKAMARA E. S, O and Sr isotope systematics of active ventmaterials from the Mariana back-arc basin spreading axis at 18@ N[J]. Earth Planet SciLett, 1990, 100:275~282.
OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal oredeposits[J]. Econ Geol, 1972, 67:551~579.
[38]
OHMOTO H, REY R O. Isotopes of sulfur and carbon[A]. Barnes H L, ed. Geochemistryof Hydrothermal Ore Deposits. 2nd ed. John Willey & Sons, 1979. 509~567.
[39]
VON Damm K L, EDMOND J M, GRANTB, et al. Chemistry of submarine hydrothermalsolutions at 21@ N, EastPacific Rise[J]. Geochim Cosmochim Acta, 1985, 49:2 197~2 220.
[40]
SAKAIH, GAMOT, KIME-S, et al. Unique chemistry of the hydrothermal solution in theMid-Okinawa trough back-arc basin[J]. Geophys Res Lett, 1990, 17:2 133~2 136.
[41]
VON D K L, BISHOFF J L. Chemistry of hydrothermal solutions from the southern Juande Fuca Ridge[J]. J Geophys Res, 1987, 92:334~346.
[42]
HALBACH P, NAKAMURA K, WASHNER M, et al. Probable modern analogue of Kuroko-typemassive sulphide deposits in the Okinawa Trough beck-arc basin[J]. Nature, 1989, 338:496~499.