全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

现代海底热液沉积物的硫同位素组成及其地质意义

, PP. 48-56

Keywords: 现代海底热液沉积物,硫同位素组成,地质意义

Full-Text   Cite this paper   Add to My Lib

Abstract:

共收集到现代海底热液沉积物的1264个硫同位素数据,结合我们对冲绳海槽Jade热液区和大西洋中脊TAG热液区中表层热液沉积物的硫同位素研究成果,对比分析了不同地质-构造环境中海底热液沉积物的硫同位素组成特征及其硫源问题.结果表明:(1)现代海底热液沉积物中硫化物的硫同位素组成集中分布在1‰~9‰之间,均值为4.5‰(n=1042),而硫酸盐矿物的硫同位素组成主要分布在19‰~24‰之间,均值为21.3‰(n=217);(2)无论在洋中脊还是在弧后盆地扩张中心,无沉积物覆盖热液活动区中热液沉积物与有沉积物覆盖热液活动区相比,其硫同位素组成的分布范围相对狭窄;(3)各热液活动区中硫化物硫同位素组成的不同,反映出各自硫源的差异性.无沉积物覆盖洋中脊中热液成因硫化物的硫主要来自玄武岩,部分来自海水,是玄武岩和海水硫酸盐中硫不同比例混合的结果,而在弧后盆地和有沉积物覆盖的洋中脊,除了火山岩以外,沉积物和有机质均可能为热液硫化物的形成提供硫;(4)现代海底热液沉积物硫同位素组成的变化和硫源的不同可能归因于海底热液体系中流体物理化学性质的变化、岩浆演化和构造-地质背景的不同.

References

[1]  ZIERENBERG R A, SHANKS W C Ⅲ.Isotopic studies of epigenetic features in metalliferous sediment, Atlantis Ⅱ Deep,RedSes[J]. Can Mineral, 1988, 26:737~753.
[2]  SHANKS W C Ⅲ, NIEMITZ J. Sulfur isotope studies of hydrothermal anhydrite andpyrite[Z]. Initial Reports of the Deep Sea Drilling Project[R], 1982, 64:1 137~1 142.
[3]  PETER J M, SHANKS W C Ⅲ. Sulfur, carbon, and oxygen isotope variations insubmarine hydrothermal deposits of Guaymas Basin, Gulf of California[J]. Gosochim CeochimActa, 1992, 56:2 025~2 040.
[4]  DUCKWORTH R, FALLICK A E, RICKARD D. Mineralogy and sulfur isotope composition ofthe Middle Valley massive sulfide deposit, northern Juan de Fuca Ridge[J]. Proc ODP SciResults, 1994, 139:373~385.
[5]  BLUTH G J, OHMOTO H. Sulfide-sulfate chimneys on the East Pacific Rise, 11@and13@N latitudes[J]. PART Ⅱ: sulfur isotopes. Can Mineral, 1988, 26:505~515.
[6]  ARNOLD M, SHEPPARD S M F. East Pacific Rise atlatitude 21@N:isotopic compositionand origin of the hydrothermal sulfur[J]. Earth Planet Sci Lett, 1981, 56:148~156.
[7]  ZIERENBERG R, SHANKS W C Ⅲ, BISCHOF F J. Massive sulfide deposits at 21@NEPR:chemical composition, stable isotopes, and phase equilibria[J]. Geol Soc Am Bull,1984, 95:922~929.
[8]  ALT J C. The chemistry and sulfur isotope composition of massive sulfide andassociated deposits on Green Seamount, Eastem Pacific[J]. Econ Geol, 1988, 83:1 026~1033.
[9]  KERRIDGE J, HAYMON R M, KASTNER M. Sulfur isotope systematics at the 21@ N site,East Pacific Rise[J]. Earth Planet Sci Lett, 1983, 66:91~100.
[10]  KASE K, YAMAMOTO M, SHIBATA T. Copper-rich sulfide deposit near 23@ N,Mid-Atlantic Ridge: chemical composition, mineral chemistry and sulfur isotopes[J]. ProcODP Sci Results, 1990, 106/109:163~177.
[11]  CHIBA H, UCHIYANA N, TEAGLE D A H. Stable isotope study of anhydrite and sulfideminerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26@ N[J]. Proc ODP SciResults, 1998, 158:85~90.
[12]  KAWAHATA H, SHIKAZONO N. Sulfur isotope and total sulfur studies of basalts andgreenstones from DSDP Hole504B, Costa Rica Rift: implications for hydrothermalalteration[J]. Can Mineral, 1988, 26:555~565.
[13]  ALTJC, ANDERSON T F, BONNELLL. The geochemistry of sulfur in a 1 . 3 km section ofhydrothermal altered oceanic crust, DSDP HoleS04B[J]. Geochim Cosmochim Acta, 1989, 53: 1011~1 023.
[14]  HERZIG P M, HANNINGTON M D, ARRIBAS A Jr. Sulfur isotopic composition ofhydrothermal precipitates from the Lau back-arc: implications for magmatic contributionsto seafloor hydrothermal systems[J]. Mineral Deposita, 1998, 33:226~237.
[15]  BOWERS T S. Stable isotope signatures of water-rock interaction in mid-ocesn ridgehydrothermal systems: sulfur, oxygen, and hydrogen[J]. J Geophys Res, 1989, 94:5 775~5786.
[16]  BUTTERFIEL D D A,MASSOTH G J. Geochemistry of north deft segment vent fluids:temporal changes in chlorinity and their possible relation to recent volcanism[J]. JGeophys Res, 1994, 99:4 951~4 968.
[17]  FOUQUET Y, VON S U, CHARLOU J L, et al. Metallogenesis in back-arc environments:the Lau Basin example[J].Econ Geol, 1993, 88:2 154~2 181.
[18]  CHARLOU J L, DONVAL J P, JEAN-Baptiste P, et al. Gases and helium isotopes in hightemperature solutions sampled before and after ODP Leg 158 drilling at TAG hydrothermalfield(26° N, MAR)[J]. Geophys Res Lett, 1996, 23:3 491~3 494.
[19]  GAMO T, CHIB A H, MASUDA H, et al. Chemical characteristics of hydrothermal fluidsfrom the TAG mound of the mid-Atlantic Ridge in August 1994: implications for spatial andtemporal variability of hydrothermal activity[J]. Geophys Res Lett, 1996, 23:3 483~3486.
[20]  BLUM N, PUCHELT H. Scdimentary-hosted polymetallic massive sulfide deposits of theKebrit and Shaban Deeps, Red Sea[J]. Miner Deposits, 1991, 26:217~227.
[21]  KOSKI R A, LONSDALE P F, SHANKS W C Ⅲ, et al. Mineralogy and geochemistry of asediment hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin,Gulf of California[J]. J Geophys Res, 1985, 90:6 695~6 707.
[22]  KOSKI R A, SHANKS W C Ⅲ, BOHRSON W A, et al. The composition of massive sulfidedeposits from the sedimentcovered floor of E scanaba Trough, Gorda Ridge: implications fordepositional processes[J]. Can Mineral, 1988, 26:655~673.
[23]  ZIERENBERG R A, KOSKI R A, MORTON J L, et al. Genesis of massive sulfide depositson a sediment-covered spreading center, Escansba Trough, Southern Gorda Ridge[J]. EconomicGeology, 1993, 88:2 069~2 098.
[24]  STUART F M, DUCKWORTH R, TURNER G, et al. Helium and sulfur isotopes in sulfidesfrom the Middle Valley,northern Juan de Fuca Ridge[J]. Proc ODP Sci Results, 1994, 139:387~392.
[25]  ZIERENBERG R A. Sulfur content of sediment and sulfur isotope values of sulfideand sulfate minerals from Middle Valley[J]. Proc ODP Sci Results, 1994, 139:739~748.
[26]  GOODFELLOW W D, FRANKLIN J M. Geology, mineralogy, and chemistry ofsediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan deFuca Ridge[J]. Fcon Geol, 1993, 88:2 037~2 068.
[27]  HANNINGTON M D, SCOTT S D. Mineralogy and geochemistry of a hydrothermalsilica-sulfide-sulfate spire in the Caldera of Axial Seamount, Juan de Fuca Ridge[J]. CanMineral, 1988, 26:603~625.
[28]  SHANKS W C Ⅲ , SEYFRIED W E Jr. Stable isotope studies of vent fluids andchimney minerals, southem Juan de Fuca Ridge: sodium metasomatism and sea water sulfatereduction[J]. J Geophys Res, 1987, 92:11 387~11 399.
[29]  HEKINIAN R, FEVRIER M, BISCHOFF J L, et al. Sulfide deposits from the East PacificRise, 21@N[J]. Science,1980, 207:1 433~1 444.
[30]  WOODRUFF L G, SHANKSWC Ⅲ. Sulfur isotope study of chimney minerals andhydrothermal fluids from 21@ N, East Pacific Rise: hydrothermal sulfur sources anddisequilibrium sulfate reduction[J]. J Geophys Res, 1988, 93:4 562~4 572.
[31]  KNOTT R, FOUQUET Y, HONNOREZ J, et al. Petrology of hydrothermal mineralization:avertical section through the TAG mound[J]. Proc ODP Sci Results, 1998, 158: 5~26.
[32]  HERZIG P M, PETERSEN S, HANNINGTON M D. Geochemistry and sulfur-isotopiccomposition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26@ N[J]. Proc ODP SciResults, 1998, 158:47~70.
[33]  GEMMELL J B, SHARPE R. Detailed sulfur-isotope investigation of the TAGhydrothermal mound and stockwork zone,26@ N, Mid-Atlantic Ridge[J]. Proc ODP Sci Results,1998, 158:71~84.
[34]  KUSAKABE M, MAYEDA S, NAKAMARA E. S, O and Sr isotope systematics of active ventmaterials from the Mariana back-arc basin spreading axis at 18@ N[J]. Earth Planet SciLett, 1990, 100:275~282.
[35]  曾志刚,蒋富清,翟世奎,等.冲绳海槽中部Jade热液活动区中海底热液沉积物的硫同位素组成及其地质意义[J].海洋学报,2000,22:74~82.
[36]  曾志刚,秦蕴珊,赵一阳,等.大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义[J].海洋与湖沼,2000,31:518~529.
[37]  OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal oredeposits[J]. Econ Geol, 1972, 67:551~579.
[38]  OHMOTO H, REY R O. Isotopes of sulfur and carbon[A]. Barnes H L, ed. Geochemistryof Hydrothermal Ore Deposits. 2nd ed. John Willey & Sons, 1979. 509~567.
[39]  VON Damm K L, EDMOND J M, GRANTB, et al. Chemistry of submarine hydrothermalsolutions at 21@ N, EastPacific Rise[J]. Geochim Cosmochim Acta, 1985, 49:2 197~2 220.
[40]  SAKAIH, GAMOT, KIME-S, et al. Unique chemistry of the hydrothermal solution in theMid-Okinawa trough back-arc basin[J]. Geophys Res Lett, 1990, 17:2 133~2 136.
[41]  VON D K L, BISHOFF J L. Chemistry of hydrothermal solutions from the southern Juande Fuca Ridge[J]. J Geophys Res, 1987, 92:334~346.
[42]  HALBACH P, NAKAMURA K, WASHNER M, et al. Probable modern analogue of Kuroko-typemassive sulphide deposits in the Okinawa Trough beck-arc basin[J]. Nature, 1989, 338:496~499.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133