全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低温胁迫下丛枝菌根真菌对玉米幼苗氮代谢的作用

DOI: 10.7668/hbnxb.2014.04.036, PP. 205-212

Keywords: 低温胁迫,丛枝菌根真菌,氮代谢,玉米幼苗

Full-Text   Cite this paper   Add to My Lib

Abstract:

旨在了解菌根真菌参与宿主抗寒的潜在作用,为开发生物肥料,推动农业可持续发展提供参考。利用盆栽试验,研究了低温胁迫下丛枝菌根(AM)真菌接种处理对玉米生物量、总氮、硝态氮、铵态氮、蛋白和氨基酸合成及氮代谢相关酶活性的影响。研究结果显示,低温胁迫下对比未接种处理,接种AM真菌提高玉米地上生物量。低温胁迫降低了玉米叶片总氮、硝态氮和可溶性蛋白的含量以及根部总氮含量,增加了叶片铵态氮的含量和根部可溶性蛋白含量。接种AM真菌均能增加玉米幼苗单位质量叶片的总氮、硝态氮和可溶性蛋白的含量。常温下,接种AM真菌能够增加玉米叶片铵态氮浓度,而低温下,接种AM真菌却降低玉米叶片铵态氮浓度。低温处理均降低玉米根部所有氨基酸和总氨基酸含量;接种AM真菌均增加玉米根部所有氨基酸和总氨基酸含量。AM真菌接种和温度均显著影响玉米硝酸还原酶和谷丙转氨酶活性,而谷氨酰胺合成酶活性仅被温度影响,谷草转氨酶活性仅受AM真菌接种处理影响。研究结果表明,低温对玉米幼苗的生长和氮吸收代谢造成严重伤害;低温胁迫下,接种AM真菌能够通过自身的氮吸收运输,改善玉米生理生长及玉米氮吸收代谢酶活性,保护低温下玉米氮吸收代谢系统,增强玉米幼苗的低温抗寒能力。

References

[1]  Chalot M,Blaudez D,Brun A.Ammonia:a candidate for nitrogen transfer at the mycorrhizal interface[J].Trends in plant science,2006,11(6):263-266.
[2]  Lam H M,Coschigano K T,Oliveira I C,et al.The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J].Annual Review of Plant Physioloty and Plant Molecular Biology,1996,47(1):569-593.
[3]  许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511-516.
[4]  Jin H,Pfeffer P E,Douds D D,et al.The uptake,metabolism,transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis[J].The New Phytologist,2005,168(3):687-696.
[5]  吉春龙,田萌萌,马继芳,等.丛枝菌根真菌对植物营养代谢与生长影响的研究进展[J].浙江师范大学学报:自然科学版,2010,33(3):303-309.
[6]  Charest C,Dalpé Y,Brown A.The effect of vesicular-arbuscular mycorrhizae and chilling on two hybrids of Zea mays L.[J].Mycorrhiza,1993,4(2):89-92.
[7]  郭绍霞,马颖,李敏.丛枝菌根真菌对彩叶草耐寒性的影响[J].青岛农业大学学报:自然科学版,2009,26(3):174-176,180.
[8]  Phillips J M,Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J].Transactions of the British mycological Society,1970,55(1):158-I61,IN16-IN18.
[9]  王小纯,熊淑萍,马新明,等.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J].生态学报,2005,25(4):802-807.
[10]  李影林.临床医学检验手册[M],长春:吉林科学技术出版社,1987:363-367.
[11]  Jackson L E,Burger M,Cavagnaro T R.Roots,nitrogen transformations,and ecosystem services[J].Annual Review of Plant Biology,2008,59(1):341-363.
[12]  Smith S E,Gianinazzi-Pearson V,Koide R, et al. Nutrient transport in mycorrhizas:structure,physiology and consequences for efficiency of the symbiosis[J].Plant and Soil,1994,159(1):103-113.
[13]  Kronzucker H J,Siddiqi M Y,Glass A D.Conifer root discrimination against soil nitrate and the ecology of forest succession[J].Nature,1997,385(6611):59-61.
[14]  Guescini M,Zeppa S,Pierleoni R, et al. The expression profile of the tuber borchii nitrite reductase suggests its positive contribution to host plant nitrogen nutrition[J].Current genetics,2007,51(1):31-41.
[15]  Kaldorf M,Schmelzer E,Bothe H.Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza[J].Molecular Plant-Microbe Interactions:MPMI,1998,11(6):439-448.
[16]  孙宝启,李玉京.小麦灌浆过程中硝酸还原酶活性与籽粒蛋白质的积累[J].中国农业大学学报,1997,2(5):20-30.
[17]  戴廷波,曹卫星,孙传范,等.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响[J].应用生态学报,2003,14(9):1529-1532.
[18]  刘卫群,陈良存,甄焕菊,等.烟叶成熟过程中碳氮代谢关键酶对追施氮肥的响应[J].华北农学报,2005,20(3):74-78.
[19]  Dixit V,Pandey V,Shyam R.Differential antioxidative responses to cadmium in roots and leaves of pea(Pisum sativum L.cv.Azad)[J].Journal of Experimental Botany,2001,52(358):1101-1109.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133