全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2008 

武汉月湖沉积物不同形态氮含量与转换途径的垂直变化

DOI: 10.18307/2008.0409

Keywords: 月湖,沉积物,氮含量,转换途径,垂直变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

描述了2005年6月月湖4个采样点沉积物不同形态氮含量、净硝化速率、净氮矿化速率与硝酸还原酶活性的垂直分布.亚表层(5-10cm)交换态NO3--N含量最高,而有效态氮与交换态NH4+-N含量最低,故具临界意义.有效态氮多以交换态NH4+-N的形式贮存于表层(0-5cm)与底层(>10cm),且底层含量较高,这种分布与缺氧状态有关.表层沉积物总氮和有机态氮含量、净硝化速率、净氮矿化速率与硝酸还原酶活性均高,间隙水中NH4+-N浓度亦取峰值,而溶解态NO3--N浓度最低,据此提出氮循环的基本过程:有机态氮经矿化与硝化产生NH4+-N与NO3--N,同时导致有利于NH4+-N生成的缺氧状态,并促使部分NO3--N异化还原为NH4+-N,二者共同构成表层间隙水中丰富的NH4+-N源.总之,富营养化湖泊表层沉积物富含有机态氮,故为氮生物地球化学循环的最为活跃的层面,而NH4+-N则为最具有效性且含量最高的形态.

References

[1]  Karl DM. A sea of change: Biogeochemical variability in the North Pacific subtropical gyre. Ecosystems, 1999, 2:181-214.
[2]  Berelson WM, The flux of particulate organic carbon into the ocean interior: a comparison of four U. S. JGOFS regional studies. Oceanography, 2001, 14(4): 59-67.
[3]  张水元 刘瑞秋.保安湖沉积物和间隙水中氮和磷的含量及其分布[J].水生生物学报,2000,24(5):434-438.
[4]  熊汉锋 王运华 谭启玲 等.梁子湖表层水氮的季节变化与沉积物氮释放初步研究[J].华中农业大学学报,2005,24(5):500-503.
[5]  金相灿 姜霞 徐玉慧 等.太湖东北部沉积物可溶性氮、磷的季节性变化[J].中国环境科学,2006,26(4):409-413.
[6]  孙惠民 何江 吕昌伟 等.乌梁素海沉积物中有机质和全氮含量分布特征[J].应用生态学报,2006,17(4):620-624.
[7]  吴永红 胡俊 金向东 等.滇池典型湖湾沉积物氮磷化学特性及疏浚层推算[J].环境科学,2005,26(4):75-82.
[8]  吴丰昌 万国江.湖泊沉积物—水界面营养元素的生物地球化学作用和环境效应:I.界面…[J].矿物学报,1996,16(4):403-409.
[9]  孙惠民 何江 吕昌伟 等.乌梁素海氮污染及其空间分布格局[J].地理研究,2006,25(6):1003-1012.
[10]  Silva JA, Bremner JM. Determination and isotope-ratio analysis of different forms of nitrogen in soils. 5.fixed ammonium. Soil Sci Soc Am Proc, 1966, 30: 587-594.
[11]  吴忠标.环境检测[M].北京:化学工业出版社,2003.195-196.
[12]  更多...
[13]  哈兹耶夫ФХ著 郑洪元 周礼恺译.土壤酶活性[M].北京:科学出版社,1980.42-43.
[14]  Anderson IC. Microbial mediation of ‘reactive\\' nitrogen transformations in a temperate lagoon. Marine Ecology-Progress Series, 2003, 246: 73-84.
[15]  Starry OS, Valett HM, Schreiber ME. Nitrification rates in a headwater stream: influences of seasonalvariation in C and N supply. Journal of the North American Benthological Society, 2005, 24(4): 753-768.
[16]  Cedergreen N, Madsen TV. Nitrate reductase activity in roots and shoots of aquatic macrophytes. Aquatic Botany, 2003, 76(3): 203-212.
[17]  Strauss EA. Nitrification in the Upper Mississippi River: Patterns, controls, and contribution to the NO3^- budget. Journal of the North American Benthological Society, 2004, 23(1): 1-14.
[18]  Lange G. Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Marine Geology, 1992, 109( 1-2): 95-114.
[19]  Weiler RR. The interstitial water composition in the sediments of the Great Lakes. 1. Western lake Ontario. Limnol Oceanogr, 1973, 18(6): 918-931.
[20]  Senga Y, Seike Y, Mochida K et al. Nitrous oxide in brackish Lakes Shinji and Nakaumi, Japan. Limnology, 2001, 2(2): 129-136.
[21]  王东红 黄清辉 王春霞等.长江中下游浅水湖泊中总氮及其形态的时空分布[J].环境科学,2004,25(增刊):27-30.
[22]  范成新 张路 等.湖泊沉积物氮磷内源负荷模拟[J].海洋与湖沼,:.
[23]  叶琳琳 潘成荣 张之源等.瓦埠湖沉积物氮的赋存特征以及环境因子对NH4^+-N释放的影响[J].农业环境科学学报,2006,25(5):1333-1336.
[24]  刘巧梅 刘敏 许世远 侯立军 欧冬妮.长江口滨岸潮滩柱样沉积物与孔隙水中氮的垂直分布特征[J].海洋科学,2004,28(9):13-19.
[25]  王雨春 尹澄清 等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,:.
[26]  冯峰 方涛 刘剑彤.武汉东湖沉积物氮磷形态垂向分布研究[J].环境科学,2006,27(6):1078-1082.
[27]  岳维忠 黄小平.珠江口柱状沉积物中氮的形态分布特征及来源探讨[J].环境科学,2005,26(2):195-199.
[28]  鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999.
[29]  Douglas VH, Peter MG, Erik K et al. Soil nitrogen dynamics in organic and mineral soil calcareous wetlands in Eastern New York. Soil Sci Soc Am J, 2000, 64(6): 2168-2173.
[30]  Kemp ALW, Mudrochova A. Distribution and forms of nitrogen in a Lake Ontario sediment core. Limnol Oceanogr, 1972, 17(6): 855- 867.
[31]  Rosenfeld JK. Ammonium adsorption in nearshore anoxic sediments. Limnol Oceanogr, 1979, 24(2): 356-364.
[32]  Koester M, Dahlke S, Meyer-Reil LA. Microbial colonization and activity in relation to organic carbon in sediments of hypertrophic coastal waters (Nordruegensche Bodden, Southern Baltic Sea). Aquat Microb Ecol, 2005, 39(1): 69-83.
[33]  YusoffFM. The effects of oxidized and reduced conditions on phosphorus and ammonia concentrations in pond water-sediment microcosm. Journal of Aquaculture in the Tropics, 2003, 18(1): 25 -33.
[34]  Souchu P. Biogeochemical aspects of bottom anoxia in a Mediterranean lagoon (Thau, France). Marine Ecology-Progress Series, 1998, 164: 135-146.
[35]  Whitmire SL, Hamilton SK. Rapid removal of nitrate and sulfate in freshwater wetland sediments. Journal of Environmental Quality, 2005, 34(6): 2062-2071.
[36]  Hoehener P, Gaechter R. Nitrogen cycling across the sediment-water interface in an eutrophic, artificially oxygenated lake. Aquatic Sciences, 1994, 56(2): 115-132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133