全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度信息的自主空中加油技术

, PP. 1750-1756

Keywords: 飞行器控制与导航技术,自主空中加油,三维快速成像激光雷达,特征提取,视觉里程计,位姿估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分析自主空中加油技术典型解决方案的基础上,提出了基于三维快速成像激光雷达(3DflashLIDAR)的自主空中加油技术方案。该方案可以在很大程度上减少或消除自主空中加油对GPS的依赖,为合理利用非相似余度导航定位功能提供可靠的技术支撑。首先根据加、受油机空中加油编队飞行特点,确定了以平尾和垂尾为特征平面的加油机点云深度信息特征提取方案和算法。其次利用拉格朗日乘法求取点云子集的最佳拟合平面的单位法向量,为视觉里程计估算加油机相对受油机位姿变化提供了信息。仿真结果表明,特征提取和位姿估算算法可行。同时为了提高视觉里程计对相对位姿估算的准确性,利用矢量中值滤波、平尾与垂尾相关性来消除测量和数据处理中产生的误差,仿真结果表明:在白噪声信噪比为25dB时,滤波算法可行。

References

[1]  边振杰. 美无人机实现空中加油将带来什么? [DB/OL].[2012-11-30]. http://www.hljnews.cn/gn_gj/2012-10/16/content_1541315_2.htm.
[2]  Spinelli C J. Development and testing of a high-speed real-time kinematic precise DGPS positioning system between two aircraft[D]. Wright-Patterson AFB OH: Department of the Air Force, Air University, 2006.
[3]  Hansen J L, Murray J E, Campos N V. The NASA Dryden AAR project:a flight test approach to an aerial refueling system[C]∥AIAA Atmospheric Flight Mechanics Conference and Exhibit,Providence, USA, 2004:477-495.
[4]  Valasek J, Gunnam K, Kimmett J,et al. Vision-based sensor and navigation system for autonomous air refueling[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5):979-989.
[5]  Veth M J. Fusion of imaging and inertial sensors for navigation[D]. Wright-Patterson AFB OH: Department of the Air Force, Air University, 2006.
[6]  Chen C I, Stettner R. Drogue tracking using 3D flash lidar for autonomous aerial refueling[C]∥Laser Radar Technology and Applications XVI, Orlando, Florid, 2011:80370Q1-80370Q11.
[7]  May S. 3D time-of-flight ranging for robotic perception in dynamic environments[D]. Osnabrück: Institute for Computer Science, Osnabrück University, 2008.
[8]  Juberts M, Barbera A. Status report on next generation LADAR for driving unmanned ground vehicles[C]∥Proceedings of SPIE, Philadelphia PA, 2004:1-12.
[9]  Bulysheva A, Pierrottetb D, Amzajerdianc F,et al. A. Processing of 3-Dimensional flash lidar terrain images generated from an airborne platform[C]∥Proceedings of SPIE, Orlando, Florida, 2009: 1-9.
[10]  慕春棣, 李波睿. 基于视觉的自动空中加油技术[J]. 清华大学学报:自然科学版,2012,52(5):670-676. Mu Chun-di, Li Bo-rui. Vision-based autonomous aerial refueling[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(5):670-676.
[11]  杜光勋, 全权, 蔡开元. 视觉与惯性传感器融合的隐式卡尔曼滤波位置估计算法[J]. 控制理论与应用, 2012, 29(7):833-840. Du Guang-xun, Quan Quan, Cai Kai-yuan. Implicit Kalman filter for position estimation with visual and inertial sensor fusion[J]. Control Theory & Applications, 2012, 29(7):833-840.
[12]  Billingsley J, Bradbeer R. Mechatronics and Machine Vision in Practice[M]. Berlin: Springer, 2008:65-75.
[13]  Strelow D W. Motion estimation from image and inertial measurements[D]. Pittsburgh PA: School of Computer Science, Carnegie Mellon University, 2004.
[14]  Weaver A D. Using predictive rendering as a vision-aided technique for autonomous aerial refueling[D]. Wright-Patterson AFB OH: Department of the Air Force, Air University, 2009.
[15]  Cheng Y, Maimone M W, Matthies L. Visual odometry on the mars exploration rovers-a tool to ensure accurate driving and science imaging[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):54-62.
[16]  Natale D J, Baram M S, Tutwiler R L. Point cloud processing strategies for noise filtering, structural segmentation, and meshing of ground-based 3D flash LIDAR images[C]∥2010 IEEE 39th Applied Imagery Pattern Recognition Workshop, Washington DC, 2010:1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133