全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多种步态的德国牧羊犬足-地接触分析

, PP. 1692-1697

Keywords: 工程仿生学,犬类动物,步态,足底压力,缓冲,生物力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

以德国牧羊犬为研究对象,测试其在常速行走、对角小跑、跳跃3种步态下的足-地接触作用特征,通过分析犬右前足的垂直地反力、足底动态压力分布特征和模式得出:试验范围内,犬右前足的垂直地反力峰值由其体重的0.69倍(常速行走)增长到其体重的1.43倍(跳跃);随着足-地接触冲击力的增大,犬右前足的主要着地区域和主要承力点产生了适应性变化和调整,由常速行走的足外侧(第四指、第五指)逐渐调整为跳跃状态下的足中部(第三指、第四指)和掌垫区域,这种适应性调整有利于其足部缓冲储能功能的发挥。

References

[1]  Hirose S, Kato K. Study on quadruped walking robot in tokyo institute of technology-future[C]∥IEEE International on Robotics and Automation, San Francisco, 2000: 414-419.
[2]  高峰. 机构学研究现状与发展趋势的思考[J]. 机械工程学报,2005,41(8): 3-17. Gao Feng. Reflection on the current status and development strategy of mechanism research[J]. Chinese Journal of Mechanical Engineering, 2005,41(8): 3-17.
[3]  陈学东,郭鸿勋,渡边桂吾. 四足步行机器人爬行步态的正运动学分析[J]. 机械工程学报, 2003, 39(2):8-12. Chen Xue-dong, Guo Hong-xun, Keigo Watanabe. Direct kinematics analysis of crawl gait for a quadruped robot[J]. Chinese Journal of Mechanical Engineering, 2003, 39(2):8-12.
[4]  王吉岱, 卢坤媛, 徐淑芬, 等. 四足步行机器人研究现状及展望[J]. 制造业自动化, 2009,31(2): 4-6. Wang Ji-dai, Lu Kun-yuan, Xu Shu-fen, et al. Research situation and prospect on quadruped walking robot[J]. Manufacturing Automation, 2009, 31(2): 4-6.
[5]  马建旭,马培荪,杨保忠,等. 四足步行机器人中一种新型腿结构缓冲特性[J]. 上海交通大学学报, 1999, 33(7): 847-850. Ma Jian-xu, Ma Pei-sun, Yang Bao-zhong, et al. Buffering of new walking mechanism in quadruped walking robot[J]. Journal of Shanghai Jiaotong University, 1999, 33(7): 847-850.
[6]  Lu Y X. Significance and progress of bionics[J]. Journal of Bionics Engineering, 2004, 1(1):1-3.
[7]  Mennitto G, Bueheler M. CARL: A complaint articulated robot leg for dynamic locomotion[J]. Robotics and Autonomous Systems, 1996, 18(3): 337-344.
[8]  Marhefka D W, Orin D E. Intelligent control of quadruped gallops[J]. IEEE/ASME Transaction on Mechatronics, 2003, 8(4): 446-456.
[9]  Zhang Z G, Fukuoka Y, Kimura H. Stable quadrupedal running based on a spring-Loaded two-segment Legged model[C]∥IEEE International Conference on Robotics & Automation, New Orieans, 2004: 2601-2606.
[10]  Papadopoulos D, Buehler M. Stable running in a quadruped robot with compliant legs[C]∥IEEE International Conference on Robotics and Automation, San Francisco, 2000:444-449.
[11]  Budsberg S C, Verstraete M C, Brown J, et al. Vertical loading rates in clinically normal dogs at a trot[J]. American Journal of Veterinary Research, 1995, 56(10): 1275-1280.
[12]  Jahss M H, Kummer F, Michelson J D. Investigations into the fat pads of the sole of the foot: heel pressure studies[J]. Foot & Ankle, 1992, 13(5): 227-232.
[13]  Biewener A A. Biomechanics of mammalian terrestrial locomotion[J]. Science, 1990, 250(4984): 1097-1103.
[14]  Chi K J. Functional implications of the mechanical inhomogeneity in mammalian paw pads[C]∥Integrative and Comparative Biology, New Orleans,2003: 827.
[15]  Rumph P F, Lander J E, Kincaid S A, et al. Ground reaction force profiles from force platform gait analyses of clinically normal mesomorphic dogs at the trot[J]. American Journal of Veterinary Research, 1994, 55(6): 756-761.
[16]  田为军, 丛茜, 金敬福. 德国牧羊犬的关节角及其地反力[J]. 吉林大学学报:工学版,2009,39(增刊1):227-231. Tian Wei-jun, Cong Qian, Jin Jing-fu. Joint angles and ground reaction force of German shepherd dog[J]. Journal of Jilin University(Engineering and Technology Edition), 2009,39(Sup.1): 227-231.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133