全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于高斯Sigma点选取的改进UPF算法

, PP. 1435-1440

Keywords: 计算机应用,粒子滤波,高斯Sigma点,无味卡尔曼滤波,MH方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对标准粒子滤波存在的粒子退化现象,提出了一种改进的UPF算法。该算法采用基于高斯Sigma点选取的自适应无味卡尔曼滤波产生建议分布函数,然后利用Metropolis-Hastings(MH)方法优化粒子,提高了对系统后验概率密度的逼近程度。仿真结果表明:改进算法降低了粒子滤波算法的粒子退化程度,提高了跟踪精度。

References

[1]  高社生,薛丽,魏文辉. 渐消自适应Unscented粒子滤波及其在组合导航中的应用[J]. 西北工业大学学报, 2012,30(1): 27-31.Gao She-sheng, Xue Li, Wei Wen-hui. Fading adaptive UPF(unscented particle filtering) algorithm and its application to integrated navigation[J]. Journal of Northwestern Polytechnical University,2012,30(1): 27-31.
[2]  袁泽剑,郑南宁,贾新春. 高斯-厄米特粒子滤波器[J].电子学报,2003, 31(7):970-973.Yuan Ze-jian, Zheng Nan-ning, Jia Xin-chun. The Gauss-Hermite particle filter[J]. Acta Electronica Sinica, 2003, 31(7):970-973.
[3]  李翠芸, 姬红兵. 快速Metropolis- Hastings变异的遗传重采样粒子滤波器[J]. 系统工程与电子技术, 2009, 31(8): 1968-1972.Li Cui-yun, Ji Hong-bing. Genetic resampling particle filter based on fast Metropolis-Hastings mutation[J]. Systems Engineering and Electronics,2009, 31(8):1968-1972.
[4]  朱志宇.粒子滤波算法及其应用[M].北京:科学出版社,2010.
[5]  傅惠民,吴云章,娄泰山.自适应扩展增量Kalman滤波方法[J].航天动力学报, 2012, 27(8):1734 -1737.Fu Hui-min, Wu Yun-zhang, Lou Tai-shan. Adaptive extended incremental Kalman filter method[J]. Journal of Aerospace Power, 2012, 27(8):1734-1737.
[6]  程水英,余莉.迭代无味卡尔曼滤波器的算法实现与应用评价[J]. 系统工程与电子技术, 2011,33(11):2546-2553.Cheng Shui-ying, Yu Li. Algorithm realization and its application evaluation of the iterated unscented Kalman filter[J]. Systems Engineering and Electronics, 2011,33(11): 2546-2553.
[7]  Gordon N J,Salmond S J,Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. Proceeding of Institute Electric Engineering, 1993, 140(2):107-113.
[8]  Vaswani N. Particle filtering for large dimensional state spaces with multimodal observation likelihoods[J]. IEEE Trans. On Signal Processing,2008,56(2): 432-440.
[9]  张俊根,姬红兵. IMM迭代扩展卡尔曼粒子滤波跟踪算法[J]. 电子与信息学报. 2010,32(5):1116 -1120.Zhang Jun-gen, Ji Hong-bing. IMM iterated extended Kalman particle filter based target tracking[J]. Journal of Electronics & Information Technology, 2010,32(5):1116 -1120.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133