全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高分辨率影像中城区树冠多尺度聚类识别方法

, PP. 1215-1224

Keywords: 摄影测量与遥感技术,影像分割,高分辨率影像,约束均值漂移,小波

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种约束均值漂移方法,对高分辨率影像中的城区树冠进行提取。该方法首先进行小波分解,建立小波金字塔结构,用特定窗口,对每一层小波的低频系数计算均值,同时对其高频系数计算标准偏差,在每一层,用这些均值和标准偏差构成特征空间,最终构成多尺度金字塔影像特征空间;然后,从金字塔顶层开始,逐层进行均值漂移计算,并在层间进行尺度传递,由于尺度传递可能造成特征空间更加不平滑,所以本文采用约束均值漂移方法进行聚类,实现城区树冠初步聚类分割。最后,由于特征空间的特征可区分性很难保证在区域边缘处的聚类精确性,所以本文进一步采用基于聚类特征的监督分割方法提取树冠。实验结果表明,与传统的直接监督方法以及非监督方法相比,该方法能较好地消除高分辨率导致的影像高度细节化等因素对城区树冠提取的影响,具有很强的实用性。方法

References

[1]  周一凡, 周坚华. 绿量快速测算模式[J].生态学报, 2006, 26(12):4204-4212. Zhou Yi-fan, Zhou Jian-hua. Fast method to detect and calculate LVV[J]. Acta Ecologica Sinica, 2006, 26 (12): 4204-4212.
[2]  Müllerová J J, Pergl J, Pyšek P. Remote sensing as a tool for monitoring plant invasions: testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed)[J].International Journal of Applied Earth Observation and Geoinformation, 2013, 25:55-65.
[3]  覃先林, 李增元, 易浩若. 高空间分辨率卫星遥感影像树冠信息提取方法研究[J].遥感技术与应用, 2005, 20(2): 228-232. Qin Xian-lin, Li Zeng-yuan, Yi Hao-ruo. Extraction method of tree crown using high-resolution satellite image[J]. Remote Sensing Technology and Application, 2005, 20(2): 228-232.
[4]  Chang A, Eo Y, Kim Y, et al. Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering[J]. Remote Sensing Letters, 2013, 4(1):29-37.
[5]  Myint S W, Lam N S N, Tylor J M. Wavelets for urban spatial feature discrimination: comparisons with fractal, spatial autocorrelation, and spatial co-occurrence approaches[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(7): 803-812.
[6]  王爽, 夏玉, 焦李成, 基于均值漂移的自适应纹理影像分割方法[J].软件学报, 2010, 21(6):1451-1461. Wang Shuang, Xia Yu, Jiao Li-chen. Mean shift based adaptive texture image segmentation method[J]. Journal of Software, 2010, 21(6): 1451-1461.
[7]  Cheng Y Z. Mean shift, mode seeking, and clustering[J]. Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
[8]  Dorin C, Peter M. Distribution free decomposition of multivariate data[J]. Pattern Analysis and Applications, 1999, 2(1): 22-30.
[9]  Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
[10]  Sheather S, Jones M. A reliable data-based bandwidth selection method for kernel density estimation[J]. Journal of the Royal Statistical Society: Serious B, 1991, 53(3): 683-690.
[11]  Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection[C]∥Proceedings 8th IEEE International Conference on Computer Vision, Stoughton: The Printing House, 2001: 438-445.
[12]  Liang K H, Tjahjadi T. Adaptive scale fixing for multiscale texture segmentation[J]. IEEE Transaction on Image Processing, 2006, 15(1): 249-256.
[13]  Freixenet J, Muñoz X, Raba D, et al. Yet another survey on image segmentation: region and boundary information integration[C]∥The 7th European Conference on Computer Vision, Copenhagen, Berlin: Springer, 2002: 408-422.
[14]  蒲智, 刘萍, 杨辽, 等. 城市绿地信息提取中的遥感影像阴影校正[J].北京林业大学学报, 2009, 31(2):80-85. Pu Zhi, Liu Ping, Yang Liao, et al. Shadow rectification of remote sensing images in information extraction for urban green space[J]. Journal of Beijing Forestry University, 2009, 31(2): 80-85.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133