OSSI T, KIRSIKKA E. A combination of weakly stabilizing mutations with a disulfide bridge in the helix region of Trichoderma reesei endo-1, 4-xylanaseⅡincreases the thermal stability through synergism [J]. Journal of Biotechnology, 2001(1):37-46.doi:10.1016/S0168-1656(01)00253-X.
XUE Yi-ming, MAO Gui-zhong, SHAO Wei-lan. Eaxpression of xlyanase B gene of Thermotoga maritime in Escherichia coli [J]. Food and Fermentation Industries, 2003, (11):20-25.doi:10.3321/j.issn:0253-990X.2003.11.005.
[4]
BADJAM A K, CHADHA B S. Functionally diverse multiple xylanases of thermophilic fungus Myceliophthora sp. IMI 38709 [J]. Enzyme and Microbial Technology, 2004(5):460-466.doi:10.1016/j.enzmictec.2004.07.002.
[5]
KULKARNI N, SHENDYE A. Molecular and biotechnological aspects of xylanases [J]. FEMS Microbiology Reviews, 1999, (4):411-456.doi:10.1111/j.1574-6976.1999.tb00407.x.
[6]
KHASIN A, ALCHANATI I, SHOHAM Y. Purification, and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6 [J]. Applied and Environmental Microbiology, 1993.1725-1730.
VIEILLE C, ZEIKUS G J. Hyperthermophilic enzymes:Sources, uses, and molecular mechanisms for thermostability [J]. Microbiology and Molecular Biology Reviews, 2001(1):1-43.doi:10.1128/MMBR.65.1.1-43.2001.
[10]
LEHMANN M, KOSTREWA D, WYSS M. From DNA sequence to improved functionality:Using protein sequence comparision to rapidly design a thermostable consesus phytase [J]. Protein Engineering, 2000(1):49-57.
[11]
ROBERTO A C, NICOLAS D, JOELLE N P. Semi-rational approaches to engineering enzyme activity:Combining the benefits of directed evolution and rational design [J]. Current Opinion in Biotechnology, 2005, (4):378-384.doi:10.1016/j.copbio.2005.06.004.
ZHANG G Y, FANG B S. Discrimination of thermophilic and mesophilic proteins via pattern recognition methods [J]. Process Biochemistry, 2006, (3):552-556.doi:10.1016/j.procbio.2005.09.003.