全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2013 

Ni,Mo和Cu添加对13Cr不锈钢组织和抗CO2腐蚀性能的影响

DOI: 10.3969/j.issn.1001-4381.2013.08.006

Keywords: 合金化,13Cr,组织,二氧化碳腐蚀

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用正交实验法,通过等离子电弧炉制备添加不同含量Ni,Mo和Cu元素的13Cr不锈钢,研究合金的微观组织、结构特征以及饱和CO2油田采出液中的腐蚀电化学和高温高压浸泡腐蚀行为。结果表明合金组织主要为马氏体和铁素体,随Ni,Mo和Cu含量不同而变化;Ni4Mo1.2Cu1.4合金中马氏体含量较高,硬度达到296.48HV1.0;所有合金均呈现出明显钝化特征,Ni4Mo1.2Cu1.4合金具有最低的维钝电流密度2.99×10-6A·cm-2和最高的点蚀电位0.35V(SCE),钝化稳定性最高;制备合金在高温高压下的浸泡腐蚀速率为0.041~0.053mm/a,低于0.076mm/a;Ni,Mo和Cu元素加入提高了合金的自腐蚀电位,降低了腐蚀倾向,其中Cu对于改善合金耐蚀性能作用最为突出。

References

[1]  HARA T, ASAHI H, KAWAKAMI A, et al. Effects of alloying elements on carbon dioxide corrosion in 13% to 20% chromium containing steels[J]. Corrosion,2000,56(4):419-428.
[2]  HARA T, ASAHI H, SUEHIRO Y, et al. Effect of flow velocity on carbon dioxide corrosion behavior in oil and gas environments[J]. Corrosion,1994,56(8):860-866.[ZK)]
[3]  ASAHI H, HARA T, SUGIYAMA M. Corrosion performance of modified 13% Cr OCTG[A]. Corrosion 96[C]. Denver,CO:NACE International,1996.
[4]  田世昌. 奥氏体耐蚀合金的应用[J]. 石油化工设备技术,1994,15(5):43-45. TIAN S C. The application of austenitic corrosion resistance alloy[J]. Petro-Chemical Equipment Technology,1994,15(5):43-45.
[5]  徐金璋. 合金元素和组织对马氏体不锈钢的耐蚀性和硬度的影响[J]. 上海钢研,2001,(2):40-44. XU J Z. Effects of alloying elements and microstructures on the corrosion resistance and hardness of martensitic stainless steel[J]. Shanghai Steel & Iron Research,2001,(2):40-44.
[6]  PARK J Y, PARK Y S. The effects of heat-treatment parameters on corrosion resistance and phase transformations of 14Cr-3Mo martensitic stainless steel[J]. Materials Science and Engineering,2007,449-451:1131-1134.
[7]  刘亚娟,吕祥鸿,赵国仙,等. 超级13Cr马氏体不锈钢在入井流体与产出流体环境中的腐蚀行为研究[J]. 材料工程,2012,(10):17-21,47. LIU Y J, LV X H, ZHAO G X, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under drilling and completion fluids environment[J]. Journal of Materials Engineering,2012,(10):17-21, 47.
[8]  DENPO K, OGAWA H. Fluid flow effects on CO2 corrosion resistance of oil well materials[J]. Corrosion,1993,49(6):442-449.
[9]  MASAMURA K, HASHIZUME S, INOHARA Y, et al. Estimation models of corrosion rates of 13Cr alloys in CO2 environments[A]. Corrosion 99[C]. San Antonio,Tx:NACE International,1999.583.
[10]  林冠发,相建民,常泽亮,等. 3种13Cr110钢高温高压CO2腐蚀行为对比研究[J]. 装备环境工程,2008,5(5):1-4. LIN G F, XIANG J M, CHANG Z L, et al. Comparative study of CO2 corrosion behavior of three 13Cr steels under high temperature and high pressure[J]. Equipment Environmental Engineering,2008,5(5):1-4.
[11]  周波,崔润炯,刘建中. 增强型13Cr钢抗CO2腐蚀套管的研制[J]. 钢管,2006,36(6):22-26.ZHOU B, CUI R J, LIU J Z. R&D of enhancement 13Cr steel anti-CO2 corrosion oil casing[J]. Steel Pipe,2006,36(6):22-26.
[12]  刘艳朝,赵国仙,薛艳,等. 超级13Cr钢在高温高压下的抗CO2腐蚀性能[J]. 腐蚀研究,2011,25(11):29-34. LIU Y Z, ZHAO G X, XUE Y, et al. Study on the CO2 corrosion resistance of super 13Cr martensitic stainless steel at high temperature and high pressure[J]. Corrosion Research,2011,25(11):29-34.
[13]  ZHANG H, ZHAO Y L, JIANG Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment[J]. Materials Letters, 2005,59(27):3370-3374.
[14]  IKEDA A, UEDA M. Effect of microstructure and Cr content in steel on CO2 corrosion[A]. Corrosion 96[C]. Denver,CO:NACE International,1996.
[15]  吕祥鸿,赵国仙,王宇,等. 超级13Cr马氏体不锈钢抗SSC性能研究[J]. 材料工程,2011,(2):17-21,25. LV X H, ZHAO G X, WANG Y, et al. SSC resistance of super 13Cr martensitic stainless steel[J]. Journal of Materials Engineering,2011,(2):17-21,25.
[16]  BERES L. Proposed modification to schaeffler diagram for chrome equivalents and carbon for more accurate prediction of martensite content[J]. Welding Journal,1998,77(7):273-276.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133