全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2013 

电子组装用SnAgCu系无铅钎料的研究进展

DOI: 10.3969/j.issn.1001-4381.2013.09.018, PP. 91-98

Keywords: 无铅钎料,SnAgCu系,可靠性,评述

Full-Text   Cite this paper   Add to My Lib

Abstract:

SnAgCu钎料广泛应用在电子组装领域,被认为是传统SnPb钎料的最佳替代品。但与Sn63Pb37钎料相比,SnAgCu钎料抗氧化能力差,钎料内部及焊点界面存在脆性金属间化合物块及服役期间焊点抗蠕变、疲劳性能较低。添加合金元素和纳米颗粒可以显著改善SnAgCu钎料的组织和性能,提高焊点可靠性。这对发展新型高性能无铅钎料是一个行之有效的办法。本文结合国内外SnAgCu系无铅钎料的最新研究成果,全面阐述了合金元素和纳米颗粒等因素对钎料的润湿性、抗氧化性以及焊点显微组织和可靠性的影响,指明了该钎料目前研究中存在的问题及今后的研究方向。

References

[1]  刘静,张富文,徐骏,等. 合金元素Cr,Al对Sn-Ag-Cu基无铅钎料高温抗氧化和润湿性的影响[J]. 稀有金属,2006,30(1):16-20. LIU Jing, ZHANG Fu-wen, XU Jun, et al. Effect of alloying elements Cr, Al on high-temperature oxidation resistance and wettability of Sn-Ag-Cu based lead-free solder[J]. Chinese Journal of Rare Metals,2006,30(1):16-20.
[2]  OHNUMA I, ISHIDA K, MOSER Z, et al. Pb-free solders: Part II application of ADAMIS database in modeling of Sn-Ag-Cu alloys with Bi additions[J]. Journal of Phase Equilibria and Diffusion,2006,27(3):245-254.
[3]  HE M, EKPENUMA S N, ACOFF V L. Microstructure and creep deformation of Sn-Ag-Cu-Bi/Cu solder joints[J]. Journal of Electronic Materials,2008,37(3):300-306.
[4]  EI-DALY A A, HAMMAD A E, FAWZY A, et al. Microstructure, mechanical properties, and deformation behavior of Sn-1.0Ag-0.5Cu solder after Ni and Sb additions[J]. Materials & Design,2013,43:40-49.
[5]  LENG E P, LING W T, AMIN N, et al. BGA lead-free C5 solder system improvement by germanium addition to Sn3.5Ag and Sn-3.8Ag-0.7Cu solder alloy[A]. Electronics Packaging Technology Conference[C]. New York,USA:IEEE,2009.
[6]  CHEN G H, MA J S, GENG Z T. Fabrication and properties of lead-free Sn-Ag-Cu-Ga solder alloy[J]. Materials Science Forum,2005,475-479:1747-1750.
[7]  CHO M G, SEO S K, LEE H M. Wettability and interfacial reactions of Sn-based Pb-free solders with Cu-xZn alloy under bump metallurgies[J]. Journal of Alloys and Compounds,2009,474(1-2):510-516.
[8]  HAO H, TIAN J, SHI Y W, et al. Properties of Sn3.8Ag-0.7Cu solder alloy with trace rare earth element Y additions[J]. Journal of Electronic Materials,2007,36(7):766-774.
[9]  ZHOU Y C,PAN Q L,HE Y B,et al. Microstructures and properties of Sn-Ag-Cu lead-free solder alloys containing La[J]. Transactions of Nonferrous Metals Society of China,2007,17(S1):1043-1048.
[10]  DUDEK M A, CHAWLA N. Mechanisms for Sn whisker growth in rare earth-containing Pb-free solders[J]. Acta Materialia, 2009, 57(15):4588-4599.
[11]  肖纪美,朱逢吾.材料能量学——能量的关系、计算和应用[M].上海:上海科学技术出版社,1999.149.
[12]  栗慧,卢斌,朱华伟. 微量Ga元素对低银系无铅钎料抗氧化性能的影响[J]. 稀有金属,2012,36(4):584-589. LI Hui, LU Bin, ZHU Hua-wei. Effect of Ga on oxidation resistance of low-silver lead-free solder[J]. Chinese Journal of Rare Metals,2012,36(4):584-589.
[13]  栗慧,卢斌,朱华伟. 微量In对Sn-0.3Ag-0.7Cu无铅钎料抗氧化性能的影响[J]. 常州工学院学报,2011,24(6):11-14. LI Hui, LU Bin, ZHU Hua-wei. Effect of micro in-element on the oxidation resistance of Sn-0.3Ag-0.7Cu lead-free solder[J]. Journal of Changzhou Institute of Technology,2011,24(6):11-14.
[14]  HUA L, HOU H N, ZHANG H Q, et al. Effects of Zn, Ge doping on electrochemical migration, oxidation characteristics and corrosion behavior of lead-free Sn-3.0Ag-0.5Cu solder for electronic packaging[A]. Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), 2010 11th International Conference on[C].New York,USA:IEEE,2010.1151-1157.
[15]  DUDEK M A, CHAWLA N. Oxidation behavior of rare-earth-containing Pb-free solders[J]. Journal of Electronic Materials,2009,38(2):210-220.
[16]  CHE F X, PANG J H L. Characterization of IMC layer and its effect on thermomechanical fatigue life of Sn-3.8Ag-0.7Cu solder joints[J]. Journal of Alloys and Compounds,2012,541:6-13.
[17]  LI B, SHI Y W, LEI Y P, et al. Effect of rare earth element addition on the microstructure of Sn-Ag-Cu solder joint[J]. Journal of Electronic Materials,2005,34(3):217-224.
[18]  GAO L L, XUE S B, ZHANG L, et al. Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder[J]. Journal of Materials Science:Materials in Electronics,2010,21(7):643-648.
[19]  CHENG F J, NISHIKAWA H, TAKEMOTO T. Microstructural and mechanical properties of Sn-Ag-Cu lead-free solders with minor addition of Ni and/or Co[J]. Journal of Materials Science,2008,43(10):3643-3648.
[20]  HASEEB A S M A, LENG T S. Effects of Co nanoparticle addition to Sn-3.8Ag-0.7Cu solder on interfacial structure after reflow and ageing[J]. Intermetallics,2011,19(5):707-712.
[21]  HASEEB A S M A, ARAFAT M M, JOHAN M R. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds[J]. Materials Characterization,2012,64:27-35.
[22]  SHNAWAH D A, SAID S B M, SABRI M F M, et al. Microstructure, mechanical, and thermal properties of the Sn-1Ag-0.5Cu solder alloy bearing Fe for electronics applications[J]. Materials Science and Engineering:A,2012,551:160-168.
[23]  LIN F, BI W, JU G, et al. Evolution of Ag3Sn at Sn-3.0Ag-0.3Cu-0.05Cr/Cu joint interfaces during thermal aging[J]. Journal of Alloys and Compounds,2011,509(23):6666-6672.
[24]  BOESENBERG A, ANDERSON I, HARRINGA J. Development of Sn-Ag-Cu-X solders for electronic assembly by micro-alloying with Al[J]. Journal of Electronic Materials,2012,41(7):1868-1881.
[25]  LI J F, AGYAKWA P A, JOHNSON C M. Effect of trace Al on growth rates of intermetallic compound layers between Sn-based solders and Cu substrate[J]. Journal of Alloys and Compounds,2012,545:70-79.
[26]  LIU P, YAO P, LIU J. Effect of SiC nanoparticle additions on microstructure and microhardness of Sn-Ag-Cu solder alloy[J]. Journal of Electronic Materials,2008,37(6):874-879.
[27]  CHANG S, TSAO L, WU M, et al. The morphology and kinetic evolution of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu-0.5Al2O3 composite solder/Cu interface during soldering reaction[J]. Journal of Materials Science:Materials in Electronics,2012,23(1):100-107.
[28]  YU A, KIM J, LEE J, et al. Pd-doped Sn-Ag-Cu-In solder material for high drop/shock reliability[J]. Materials Research Bulletin,2010,45(3):359-361.
[29]  GAIN A K, FOUZDER T, CHAN Y C, et al. The influence of addition of Al nano-particles on the microstructure and shear strength of eutectic Sn-Ag-Cu solder on Au/Ni metallized Cu pads[J]. Journal of Alloys and Compounds,2010,506(1):216-223.
[30]  RAO B S S C, KUMAR K M, KRIPESH V, et al. Tensile deformation behavior of nano-sized Mo particles reinforced SnAgCu solders[J]. Materials Science and Engineering:A,2011,528(12):4166-4172.
[31]  RAMIREZ M, HENNEKEN L, VIRTANEN S. Oxidation kinetics of thin copper films and wetting behavior of copper and Organic Solderability Preservatives (OSP) with lead-free solder[J]. Applied Surface Science,2011,257(15):6481-6488.
[32]  CHUANG C L, TSAO L C, LIN H K, et al. Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder[J]. Materials Science and Engineering:A,2012,558:478-484.
[33]  KIM K S, HUH S H, SUGANUMA K. Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints[J]. Journal of Alloys and Compounds,2003,352(1-2):226-236.
[34]  CHOI H, LEE T, KIM Y, et al. Improved strength of boron-doped Sn-1.0Ag-0.5Cu solder joints under aging conditions[J]. Intermetallics,2012,20(1):155-159.
[35]  ZHANG B, DING H, SHENG X J. Reliability study of board-level lead-free interconnections under sequential thermal cycling and drop impact[J]. Microelectronics Reliability,2009,49(5): 530-536.
[36]  TAY S L, HASEEB A S M A, JOHAN M R, et al. Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn-3.8Ag-0.7Cu lead-free solder and copper substrate[J]. Intermetallics,2013,33:8-15.
[37]  KOH K X, HASEEB A S M A, ARAFAT M M, et al. Effects of Mn nanoparticles on wettability and intermetallic compounds in between Sn-3.8Ag-0.7Cu and Cu substrate during multiple reflow[A]. Quality Electronic Design(ASQED)[C]. New York,USA:IEEE,2012.297-301.
[38]  MOSER Z, SEBO P, GASIOR W, et al. Effect of indium on wettability of Sn-Ag-Cu solders. Experiment vs modeling: Part I[J]. Calphad,2009,33(1):63-68.
[39]  FALLAHI H, NURULAKMAL M S, AREZODAR A F, et al. Effect of iron and indium on IMC formation and mechanical properties of lead-free solder[J]. Materials Science and Engineering:A,2012,553:22-31.
[40]  刘晓英,马海涛,罗忠兵,等. Fe粉对Sn-3Ag-0.5Cu复合钎料组织及性能的影响[J]. 中国有色金属学报,2012,22(4):1169-1176. LIU Xiao-ying, MA Hai-tao, LUO Zhong-bing, et al. Effect of Fe particles on microstructures and properties of Sn-3Ag-0.5Cu lead-free solder[J]. The Chinese Journal of Nonferrous Metals,2012,22(4):1169-1176.
[41]  ANDERSON I E, COOK B A,HARRINGA J,et al.Microstructural modifications and properties of Sn-Ag-Cu solder joints induced by alloying[J].Journal of Electronic Materials,2002,31(11):1166-1174.
[42]  ZHANG X P, YIN L M, YU C B. Thermal creep and fracture behaviors of the lead-free Sn-Ag-Cu-Bi solder interconnections under different stress levels[J]. J Mater Sci: Mater Electron, 2008, 19(4):393-398.
[43]  LAI Y S, SONG J M, CHANG H C,et al. Ball impact responses of Ni-or Ge-doped Sn-Ag-Cu solder joints[J].Journal of Electronic Materials,2008,37(2):201-209.
[44]  XIAO W M, SHI Y W, XU G C, et al. Effect of rare earth on mechanical creep-fatigue property of SnAgCu solder joint[J]. Journal of Alloys and Compounds,2009,472(1-2):198-202.
[45]  GAIN A K, CHAN Y C, YUNG W K C. Effect of additions of ZrO2 nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads[J]. Microelectronics Reliability,2011,51(12):2306-2313.
[46]  张启运,庄鸿寿. 钎焊手册[M]. 2版. 北京: 机械工业出版社,2008.
[47]  KOTADIA H R, MOKHTARI O, CLODE M P, et al. Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni-P substrates[J]. Journal of Alloys and Compounds,2012,511(1):176-188.
[48]  LIU W P, BACHORIK P, LEE N C. The superior drop test performance of SAC-Ti solders and its mechanism[A]. Electronic Manufacturing Technology Symposium(IEMT)[C]. New York,USA:IEEE,2008.452-458.
[49]  王丽凤,孙凤莲,吕烨,等. Sn-3.0Ag-0.5Cu-xNi无铅焊料及焊点的性能[J]. 焊接学报,2009,30(1):9-12. WANG Li-feng, SUN Feng-lian, LV Ye, et al. Properties of Sn-3.0Ag-0.5Cu-xNi lead-free solders and soldering joints[J]. Transactions of the China Welding Institution,2009,30(1):9-12.
[50]  DONG W X, SHI Y W, LEI Y P, et al. Effects of small amounts of Ni/P/Ce element additions on the microstructure and properties of Sn3.0Ag0.5Cu solder alloy[J]. Journal of Materials Science:Materials in Electronics,2009,20(10):1008-1017.
[51]  LU S, LUO F, CHEN J, et al. Microstructural and physical characteristics of Sn-Ag-Cu-Mg lead-free solders[A].Electronic Packaging Technology & High Density Packaging, International Conference on[C]. New York,USA:IEEE,2008.1-4.
[52]  ZHAO X Y, ZHAO M Q, CUI X Q, et al. Effect of cerium on microstructure and mechanical properties of Sn-Ag-Cu system lead-free solder alloys[J]. Transactions of Nonferrous Metals Society of China,2007,17(4):805-810.
[53]  SHI Y W, TIAN J, HAO H, et al. Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder[J]. Journal of Alloys and Compounds,2008,453(1-2):180-184.
[54]  GAO L L, XUE S B, ZHANG L, et al. Effect of praseodymium on the microstructure and properties of Sn3.8Ag0.7Cu solder[J]. Journal of Materials Science:Materials in Electronics, 2010,21(9):910-916.
[55]  LIN L W, SONG J M, LAI Y S. Alloying modification of Sn-Ag-Cu solders by manganese and titanium[J]. Microelectronics Reliability,2009,49(3):235-241.
[56]  HAMADA N, UESUGI T, TAKIGAWA Y, et al. Effects of Zn addition and aging treatment on tensile properties of Sn-Ag-Cu alloys[J]. Journal of Alloys and Compounds,2012,527:226-232.
[57]  LI G Y, CHEN B L, SHI X Q, et al. Effects of Sb addition on tensile strength of Sn-3.5Ag-0.7Cu solder alloy and joint[J].Thin Solid Films,2006,504(1-2):421-425.
[58]  孟工戈,杨拓宇,陈雷达,等. Ge对SnAgCu/Cu钎焊界面结构的影响[J]. 焊接学报,2008,29(7):51-54. MENG Gong-ge, YANG Tuo-yu, CHEN Lei-da, et al. Effect of Ge on the SnAgCu/Cu soldering interface[J]. Transactions of the China Welding Institution,2008,29(7):51-54.
[59]  CHUANG C M, LIN K L.Effect of microelements addition on the interfacial reaction between Sn-Ag-Cu solders and the Cu substrate[J].Journal of Electronic Materials, 2003,32(12):1426-1431.
[60]  CHANG S Y, JAIN C C, CHUANG T H, et al. Effect of addition of TiO2 nanoparticles on the microstructure, microhardness and interfacial reactions of Sn3.5AgXCu solder[J]. Materials & Design,2011,32(10):4720-4727.
[61]  AMAGAI M, TOYODA Y, OHNISHI T, et al. High drop test reliability:lead-free solders[A]. Electronic Components and Technology Conference[C]. New York,USA:IEEE,2004.1304-1309.
[62]  DUDEK M A, CHAWLA N. Effect of rare-earth (La, Ce, and Y) additions on the microstructure and mechanical behavior of Sn-3.9Ag-0.7Cu solder alloy[J]. Metallurgical and Materials Transactions A,2010,41(3):610-620.
[63]  ZHANG L, XUE S B, GAO L L, et al. Effects of trace amount addition of rare earth on properties and microstructure of Sn-Ag-Cu alloys[J]. Journal of Materials Science:Materials in Electronics,2009,20(12):1193-1199.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133