全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2014 

预成形体渗透率预测及剪切变形的影响

DOI: 10.11868/j.issn.1001-4381.2014.11.002, PP. 7-14

Keywords: 预成形体,渗透率,Brinkman方程,有限差分法,贴体坐标

Full-Text   Cite this paper   Add to My Lib

Abstract:

准确预测预成型体渗透率对复合材料液态成型工艺过程仿真有重要意义,铺覆过程中织物发生的剪切变形对局部渗透率有很大影响。本工作考虑纱线的可渗透性,对织物单胞内的树脂流动建立了统一的流动控制方程,同时建立了逼真的正交单胞几何模型,基于Adams-Bashforth差分格式和Chorin投影法构造了数值求解树脂流动控制方程的高分辨率TVD格式,利用达西定律预测了单胞的渗透率,算例表明该算法预测值与实验值有较好的吻合,验证了算法的准确性。在正交单胞渗透率求解的基础上,采用贴体坐标法完成了单胞剪切变形后流动控制方程从物理域到计算域的转换,进而实现了剪切单胞渗透率的数值预测,考察了单胞主渗透率比与剪切角的关系,通过与文献中数据对比证明了该剪切单胞渗透率预测算法的合理性。

References

[1]  LOUIS M, HUBER U. Investigation of shearing effects on the permeability of woven fabrics and implementation into LCM simulation [J]. Composites Science and Technology, 2003, 63: 2081-2088.
[2]  HAMILA N, BOISSE P. Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element[J]. Composites: Part B, 2008,39: 999-1010.
[3]  VERLEYE B, CROCE R, GRIEBEL M. Permeability of textile reinforcements: simulation, influence of shear and validation[J]. Composites Science and Technology, 2008, 68: 2804-2810.
[4]  VERLEYE B, LOMOV S V, LONG A. Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding[J]. Composites: Part A, 2010, 41: 29-35.
[5]  TAKANO N, ZAKO M, OKAZAKI T, et al. Microstructure-based evaluation of the influence of woven architecture on permeability by asymptotic homogenization theory[J]. Composites Science and Technology, 2002, 62: 1347-1356.
[6]  CHEN Z R, YE L, LU M. Permeability predictions for woven fabric preforms[J]. Journal of Composite Materials, 2010, 44(13): 1569-1586.
[7]  李海晨, 张明福, 王彪. RTM工艺增强纤维渗透率测量方法研究[J]. 航空材料学报, 2001, 21(1): 51-54. LI H C, ZHANG M F, WANG B. Method on measuring fibre permeabilities in resin transfer molding[J]. Journal of Aeronautical Materials, 2001, 21(1): 51-54.
[8]  田正刚, 祝颖丹, 张垣, 等. 剪切效应对纤维增强材料渗透率的影响[J]. 武汉理工大学学报, 2005, 27(2): 4-12.TIAN Z G, ZHU Y D, ZHANG Y, et al. Influence of shearing effects on the permeability of fiber reinforcement[J]. Journal of Wuhan University of Technology, 2005, 27(2): 4-12.
[9]  祝君军, 段跃新, 陈吉平, 等. 碳纤维经编织物定型参数及渗透特性[J]. 复合材料学报, 2012, 29(3): 42-48.ZHU J J, DUAN Y X, CHEN J P, et al. Packifier parameters and permeability characteristics of non-crimp stitched carbon fabric[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 42-48.
[10]  罗云烽, 段跃新, 王伟, 等. VIP 工艺中L 型构件渗透规律的实验研究[J]. 材料工程, 2009, (增刊2): 15-19. LUO Y F, DUAN Y X, WANG W, et al. Experimental study on permeability of L-type preform for vacuum infusion process[J]. Journal of Materials Engineering, 2009,(Suppl 2): 15-19.
[11]  戴福洪, 张博明, 杜善义. 用均匀化方法预报平纹织物的渗透率[J]. 复合材料学报, 2009, 26(2): 90-93. DAI F H, ZHANG B M, DU S Y. Permeability prediction of fabric preform using homogenization method[J]. Acta Materiae Compositae Sinica, 2009, 26(2): 90-93.
[12]  倪爱清, 王继辉, 朱以文. 复合材料液体模塑成型工艺中预成型体渗透率张量的数值预测[J]. 复合材料学报, 2007, 24(6): 50-56. NI A Q, WANG J H, ZHU Y W. Numerical prediction of saturated permeability tensor of a woven fabric for use in the fluid simulation of liquid composite molding[J]. Acta Materiae Compositae Sinica, 2007, 24(6): 50-56.
[13]  吴炎, 晏石林, 谭华. 具有空隙尺寸双尺度特性的纤维织物渗透率的预测[J]. 固体力学学报, 2008, 29(S):80-84. WU Y, YAN S L, TAN H. Predication of permeability in a glass-fiber mat with dual-scale pore-size[J]. Chinese Journal of Solid Mechanics, 2008, 29(S):80-84.
[14]  GEBART B A. Permeability of unidirectional reinforcements for RTM[J]. Journal of Composite Materials, 1992, 26(8), 1100-1133.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133