XU Q, CHATURVEDI M C, RICHARDS N L. The role of phase transformation in electron beam welding of TiAl-based alloys[J]. Metallurgical and Materials Transactions A,1999,30(7):1717-1726.
[2]
CHATURVEDI M C, XU Q, RICHARDS N L. Development of crack-free welds in a TiAl-based alloy[J]. Journal of Materials Processing Technology, 2001,118(1-3):74-78.
[3]
JONES S A, KAUFMAN M J. Phase equilibria and transformations in intermediate titanium-aluminum alloys[J]. Acta Metallurgica, 1993,41(2):387-398.
[4]
FRITZ A. Recent developments in the design and processing of gamma-based titanium aluminide alloys[J]. Materials Science Forum, 2003, 426-432(1):91-98.
[5]
THREADGILL P L. Prospects for joining titanium aluminides[J]. Materials Science & Engineering A,1995 ,192-193(2):640-646.
[6]
ARENAS M F, ACOFF V L. Analysis of gamma titanium aluminide welds produced by gas tungsten arc welding[J]. Welding Journal, 2003,72(5):110-115.
[7]
HIROSE A, ARITA Y, KOBAYASHI K F. Microstructure and crack density of laser-fusion zones of Ti-46mol%Al-2mol%Mo alloy[J]. Journal of Materials Science,1995,30(4):970-979.
[8]
PATTERSON R A, MARTIN P L, DAMKROGER B K. Titanium aluminide-electron beam weldability[J]. Welding Journal,1990,69(1):39-44.
[9]
CHATURVEDI M C, RICHARDS N L, XU Q. electron beam welding of a Ti-45Al-2Nb-2Mn+0.8 vol.% TiB2XD alloy [J].Materials Science & Engineering A,1997, 239-240:605-612.
[10]
LIN J G, WEN C E, ZHANG Y G, et al. Diffusion ledge mechanism of massive γ transformation in quenched TiAl alloys[J]. J Mater Sci lett,1999,18(12):927-929.
[11]
DENQUIN A, NAKA S. Phase transformation mechanisms involved in two-phase TiAl-based alloys[J]. Acta Materialia, 1996, 44(1):353-365.
[12]
PRASAD U, CHATURVEDI M C. Influence of alloying elements on the kinetics of massive transformation in gamma titanium aluminides[J]. Metallurgical and Materials Transactions A,2003,34(10):2053-2066.