洪友士,赵爱国,钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7):769-780. HONG Y S, ZHAO A G, QIAN G A. Essential characteristics and influential factors for very-high-cycle fatigue behavior of metallic materials[J]. Acta Metallurgica Sinica, 2009, 45(7): 769-780.
[2]
周承恩,谢季佳,洪友士. 超高周疲劳研究现状及展望[J]. 机械强度, 2004, 26(5):526-533. ZHOU C E, XIE J J, HONG Y S. Retrospect and prospect of very high cycle fatigue[J]. Journal of Mechanical Strength, 2004, 26(5): 526-533.
[3]
王清远,刘永杰. 结构金属材料超高周疲劳破坏行为[J]. 固体力学学报, 2010, 31(5):496-502. WANG Q Y, LIU Y J. Understanding fatigue failure in structural metals in ultra-high cycle regime[J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 496-502.
[4]
胡燕慧,张铮,钟群鹏,等. 金属材料超高周疲劳研究综述[J]. 机械强度, 2009, 31(6): 979-985. HU Y H, ZHANG Z, ZHONG Q P, et al. Recent development of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2009, 31(6): 979-985.
[5]
鲁连涛,张卫华. 金属材料超高周疲劳研究综述[J]. 机械强度, 2005, 27(3): 388-395. LU L T, ZHANG W H. Review of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2005, 27(3): 388-395.
李永德,李守新,杨振国,等. 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44(1): 64-68. LI Y D, LI S X, YANG Z G, et al. Influence of hydrogen on ultrahigh cycle fatigue properties of high strength spring steel 50CrV4[J]. Acta Metallurgica Sinica, 2008, 44(1): 64-68.
[8]
LI Y D, YANG Z G, LI S X, et al. Effect of hydrogen on fatigue strength of high-strength steels in the VHCF regime[J]. Advcanced Engineering Materials, 2009, 11(7): 561-567.
[9]
褚武扬,乔立杰,陈奇志. 断裂与环境断裂[M]. 北京:科学出版社, 2000. 95-109.
[10]
NAKATANI M, FUJIHARA H, SAKIHARA M, et al. Fatigue crack growth acceleration caused by irreversible hydrogen desorption in high-strength steel and its mechanical condition[J]. Materials Science and Engineering:A, 2011, 528(25-26): 7729-7738.
[11]
WANG M Q, AKIYAMA E, TSUZAKI K. Hydrogen degradation of a boron-bearing steel with 1050 and 1300 MPa strength levels[J]. Scripta Materialia, 2005, 52(5): 403-408.
[12]
MURAKAMI Y, MATSUNAGA H. The effect of hydrogen on fatigue properties of steels used for fuel cell system[J]. International Journal of Fatigue, 2006, 28(11): 1509-1021.
[13]
郭昀静,王春芳,李建锡,等. 利用TDS研究二次硬化钢中氢的扩散行为[J]. 航空材料学报, 2012, 32(3): 5-9. GUO Y J, WANG C F, LI J X, et al. Investigation of hydrogen diffusion in secondary hardening steel by means of thermal desorption spectrometry[J]. Journal of Aeronautical Materials, 2012, 32(3): 5-9.
[14]
CHAPETTI M D, TAGAWA T, MIYATA T. Ultra-long cycle fatigue of high-strength carbon steels part Ⅱ: estimations of fatigue limit for failure from internal inclusions[J]. Materials Science and Engineering:A, 2003, 356(1-2): 236-244.
[15]
MURAKAMI Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions[M]. Amsterdam & Boston: Elsevier, 2002. 11-24.
[16]
LIU Y B, YANG Z G, LI Y D, et al. On the formation of GBF of high-strength steels in the very high cycle fatigue regime[J]. Materials Science and Engineering:A, 2008, 497(1-2): 408-415.
[17]
LI Y D, CHEN S M, LIU Y B, et al. The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime[J]. Journal of Materials Science, 2010, 45(3): 831-841.
[18]
NARITA N, SHIGA T, HIGASHIDA K. Crack-impurity interactions and their role in the embrittlement of Fe alloy crystals charged with light elements[J]. Materials Science and Engineering:A, 1994, 176(1-2): 203-209.ff
[19]
邵红红,蒋小燕,张道军. 40CrNiMoA钢不同微观组织超声疲劳寿命研究[J]. 材料工程, 2008,(5):24-28. SHAO H H, JIANG X Y, ZHANG D J. Ultrasonic fatigue lives of 40CrNiMoA steel with different microstructures[J]. Journal of Materials Engineering, 2008, (5):24-28.
[20]
胡燕慧,钟群鹏,张峥,等. 超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响[J]. 材料工程, 2011,(2):26-30. HU Y H, ZHONG Q P, ZHANG Z, et al. Effect of ultrasonic fatigue testing method on fatigue properties and crack initiation mechanism of S06 steel[J]. Journal of Materials Engineering, 2011, (2):26-30.
[21]
STANZL S E, TSCHEGG E K, MAYER H. Lifetime measurements for random loading in the very high cycle fatigue range[J]. International Journal of Fatigue, 1986, 8(4): 195-200.[ZK)]
[22]
MURAKAMI Y, YOKOYAMA N N, NAGATA J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25(8-9): 735-746.
[23]
BATHIAS C, PARIS P C. Gigacycle fatigue in mechanical practice[M]. New York: Marcel Dekker, 2005. 1-7.
[24]
WANG Q Y, BERARD J Y, DUBARRE A, et al. Gigacycle fatigue of ferrous alloys[J]. Fatigue Fracture Engineering Materials Structure, 1999, 22(8): 667-673.
[25]
YANG Z G, LI S X, ZHANG J M, et al. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime[J]. Acta Materialia, 2004, 52(18): 5235-5241.
[26]
MURAKAMI Y, NOMOTO T, UEDA T, et al. On the mechanism of fatigue failure in the superlong life regime (N >107 cycles). PartⅠ: Influence of hydrogen trapped by inclusions[J]. Fatigue Fracture Engineering Materials Structure, 2000, 23(11): 893-902.
[27]
MURAKAMI Y, NOMOTO T, UEDA T, et al. On the mechanism of fatigue failure in the superlong life regime (N >107 cycles). PartⅡ: A fractographic investigation[J]. Fatigue Fracture Engineering Materials Structure, 2000, 23(11): 903-910.
[28]
SAKAI T, SATO Y, OGUMA N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25(8-9): 765-773.
[29]
SHIOZAWA K, LU L, ISHIHARA S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue Fracture Engineering Materials Structure, 2001, 24(12): 781-790.
[30]
OCHI Y, MATSUMURA T, MASAKI K, et al. High-cycle rotating bending fatigue property in very long-life ragime of high-strength steels[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25(8-9): 823-830.
[31]
WANG Q Y, BATHIAS C, KAWAGOISHI N, et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J]. International Journal of Fatigue, 2002, 24(12): 1269-1274.