全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2014 

38MnVS6非调质钢两种高温本构模型的对比

DOI: 10.3969/j.issn.1001-4381.2014.02.016, PP. 81-86

Keywords: 38MnVS6,流动应力,Arrhenius方程,人工神经网络模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Gleeble-1500热模拟实验机对38MnVS6非调质钢在温度为950~1200℃、应变速率为0.01~5s-1进行等温、等应变速率热压缩实验。依据实验所获得的流动应力曲线,分别采用双曲正弦形式的Arrhenius方程和BP人工神经网络模型建立该种钢的高温本构模型。分别统计计算两种模型预测值与实验值之间的相关系数和平均相对误差。结果表明神经网络模型具有更高的精度,更适合用于该种钢的高温流动应力预测。

References

[1]  DIXIT U S, JOSHI S N, DAVIM J P. Incorporation of material behavior in modeling of metal forming and machining processes: A review[J]. Materials and Design, 2011, 32(7):3655-3670.
[2]  LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4):1733-1759.
[3]  LAASRAOUI A, JONAS J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A, 1991, 22(7):1545-1558.
[4]  SELLARS C M, TEGART W J M. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[5]  JI G, LI F, LI Q, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel[J]. Materials Science and Engineering: A, 2011, 528(13-14):4774-4782.
[6]  LIN Y C, ZHANG J, ZHONG J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J]. Computational Materials Science, 2008, 43(4):752-758.
[7]  常开地, 王萍, 刘卫萍. 非调质钢的发展现状和应用进展[J]. 金属热处理, 2011, 36(3):80-85.CHANG K D, WANG P, LIU W P. Development status and application prospect of non-quenched tempered steel[J]. Heat Treatment of Metals, 2011,36(3):80-85.
[8]  缪桃生, 蒋鹏. 非调质钢在汽车曲轴、连杆锻件上的应用研究[J]. 锻压技术, 2010, 35(6):1-5.MIU T S, JIANG P. Application research on non quenched and tempered steel for automotive forging of crankshaft and connecting rod[J].Forging and Stamping Technology, 2010,35(6):1-5.
[9]  王进, 褚忠, 陈军. 38MnVS6非调质钢高温奥氏体流动应力模型研究[J]. 热加工工艺, 2010, 39(20):5-8.WANG J, CHU Z, CHEN J. Research on flow stress model of 38MnVS6 non-quenched and tempered steel during hot forming[J]. Hot Working Technology, 2010, 39(20):5-8.
[10]  LIN Y C, CHEN M S, ZHONG J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Computational Materials Science, 2008, 42(3):470-477.
[11]  MANDAL S, RAKESH V, SIVAPRASAD P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering: A, 2009, 500(1-2):114-121.
[12]  SAMANTARAY D, MANDAL S, BHADURI A K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel[J]. Materials and Design, 2010, 31(2):981-984.
[13]  PU Z J, WU K H, SHI J, et al. Development of constitutive relationships for the hot deformation of boron microalloying TiAl-Cr-V alloys[J]. Materials Science and Engineering: A, 1995, 192-193:780-787.
[14]  XIAO Y H, GUO C, GUO X Y. Constitutive modeling of hot deformation behavior of H62 brass[J]. Materials Science and Engineering: A, 2011, 528(21):6510-6518.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133