DIXIT U S, JOSHI S N, DAVIM J P. Incorporation of material behavior in modeling of metal forming and machining processes: A review[J]. Materials and Design, 2011, 32(7):3655-3670.
[2]
LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4):1733-1759.
[3]
LAASRAOUI A, JONAS J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A, 1991, 22(7):1545-1558.
[4]
SELLARS C M, TEGART W J M. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[5]
JI G, LI F, LI Q, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel[J]. Materials Science and Engineering: A, 2011, 528(13-14):4774-4782.
[6]
LIN Y C, ZHANG J, ZHONG J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J]. Computational Materials Science, 2008, 43(4):752-758.
[7]
常开地, 王萍, 刘卫萍. 非调质钢的发展现状和应用进展[J]. 金属热处理, 2011, 36(3):80-85.CHANG K D, WANG P, LIU W P. Development status and application prospect of non-quenched tempered steel[J]. Heat Treatment of Metals, 2011,36(3):80-85.
[8]
缪桃生, 蒋鹏. 非调质钢在汽车曲轴、连杆锻件上的应用研究[J]. 锻压技术, 2010, 35(6):1-5.MIU T S, JIANG P. Application research on non quenched and tempered steel for automotive forging of crankshaft and connecting rod[J].Forging and Stamping Technology, 2010,35(6):1-5.
[9]
王进, 褚忠, 陈军. 38MnVS6非调质钢高温奥氏体流动应力模型研究[J]. 热加工工艺, 2010, 39(20):5-8.WANG J, CHU Z, CHEN J. Research on flow stress model of 38MnVS6 non-quenched and tempered steel during hot forming[J]. Hot Working Technology, 2010, 39(20):5-8.
[10]
LIN Y C, CHEN M S, ZHONG J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Computational Materials Science, 2008, 42(3):470-477.
[11]
MANDAL S, RAKESH V, SIVAPRASAD P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering: A, 2009, 500(1-2):114-121.
[12]
SAMANTARAY D, MANDAL S, BHADURI A K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel[J]. Materials and Design, 2010, 31(2):981-984.
[13]
PU Z J, WU K H, SHI J, et al. Development of constitutive relationships for the hot deformation of boron microalloying TiAl-Cr-V alloys[J]. Materials Science and Engineering: A, 1995, 192-193:780-787.
[14]
XIAO Y H, GUO C, GUO X Y. Constitutive modeling of hot deformation behavior of H62 brass[J]. Materials Science and Engineering: A, 2011, 528(21):6510-6518.