全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2014 

高应变率下AZ31镁合金焊接接头动态力学性能

DOI: 10.11868/j.issn.1001-4381.2014.05.010, PP. 53-58

Keywords: 分离式Hopkinson压杆,高应变速率,AZ31镁合金,氩弧焊,搅拌摩擦焊,解理断裂

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用分离式Hopkinson压杆在应变速率为900~2500s-1范围内对轧制态AZ31镁合金氩弧焊(TIG)和搅拌摩擦焊(FSW)焊接接头进行了高速冲击压缩实验,利用金相显微镜和扫描电子显微镜对压缩后的接头组织和断口进行了观察。结果表明随着应变速率的增大,合金的真应力-应变曲线变化不大,说明AZ31镁合金两种焊接接头对应变速率的敏感性较小;在高应变速率下FSW焊接接头的强度及塑性均优于TIG焊接接头;两种接头在高应变速率下的断裂方式均为解理断裂,但相对于TIG焊接接头,FSW焊接接头更加平整光滑;两种接头的显微组织对应变率均不敏感,并且在高应变率压缩下的变形方式相同,主要为滑移。

References

[1]  刘正,张奎,曾小勤. 镁基轻质合金理论基础及应用[M]. 北京: 机械工业出版社, 2002. 31-35.
[2]  LUO A A. Recent magnesium alloy development for automotive powertrain applications[J]. Materials Science Forum, 2003,419-422: 57-66.
[3]  LIU L M, WANG J F, SONG G. Hybrid laser TIG welding,laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy[J].Materials Science and Engineering: A, 2004, 381(1-2):129-133.
[4]  陈振华, 严红革, 陈吉华, 等. 镁合金[M]. 北京: 化学工业出版社, 2004.
[5]  周海, 丁成钢, 胡飞, 等. 不同电流下AZ31镁合金交流钨极氩弧焊焊接接头的显微组织与力学性能[J].机械工程材料, 2011,35(5):47-50.
[6]  ZHOU Hai, DING Cheng-gang, HU Fei, et al. Microstructure and mechanical properties of welded joint of AZ31 magnesium alloy AC-TIG welding with different currents[J]. Materials for Mechanical Engineering, 2011,35(5):47-50.
[7]  张福全, 王响群, 陈振华, 等. AZ31镁合金薄板的交流钨极氩弧焊[J].湖南大学学报: 自然科学版, 2004,31(6):9-12.
[8]  ZHANG Fu-quan, WANG Xiang-qun, CHEN Zhen-hua, et al. Gas tungsten arc of welded magnesium alloy AZ31 plates[J]. Journal of Hunan University: Natural Sciences, 2004,31(6):9-12.
[9]  彭建, 周绸, 潘复生. AZ61镁合金薄板TIG焊接头的组织和性能[J].热加工工艺, 2010,39(21):1-4.
[10]  PENG Jian, ZHOU Chou, PAN Fu-sheng. Microstructure and mechanical properties of welded joint of AZ61 magnesium alloy plates by TIG welding[J]. Hot Working Technology, 2010,39(21):1-4.
[11]  SRINIVASAN P B, RIEKEHR S, BLAWERT C. Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldments[J]. Transactions of Nonferrous Metals Society of China, 2011,21(1):1-8.
[12]  FORCELLESE A, FRATINI L, GABRIELLI F, et al. Formability of friction stir welded AZ31 magnesium alloy sheets[J]. Materials Science Forum, 2010,638(1-2):1249-1254.
[13]  CHOWDHURY S M, CHEN D L, BHOLE S D, et al. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy[J]. Materials Science and Engineering:A, 2010, 527(12):2951-2961.
[14]  苏允海, 刘政军, 王玉, 等. 外加磁场对AZ31镁合金焊接接头组织性能的影响[J].热加工工艺, 2006, 35(23):4-6. SU Yun-hai, LIU Zheng-jun, WANG Yu, et al. Effect of longitudinal magnetic field on microstructures and properties of welded joint of AZ31 magnesium alloy[J]. Hot Working Technology, 2006, 35(23):4-6.
[15]  胡时胜.霍普金森压杆技术[J].兵器材料科学与工程, 1991,(11):40-47. HU Shi-sheng. Hopkinson pressure bar technology[J]. Ordnance Material Science and Engineering, 1991, (11): 40-47.
[16]  毛萍莉, 刘正, 王长义. 高应变速率下AZ31B镁合金的压缩变形组织[J]. 中国有色金属学报, 2009, 19(5): 816-820. MAO Ping-li, LIU Zheng, WANG Chang-yi. Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5): 816-820.
[17]  WATANABE H, ISHIKAWA K. Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy[J].Materials Science and Engineering: A, 2009, 523(1-2):304-311.
[18]  YANG Y B, WANG F C, TAN C W, et al. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J].Transactions of Nonferrous Metals Society of China, 2008,18(5):1043-1046.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133