全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Banach空间中分离变分不等式的 Levitin-Polyak-α适定性

, PP. 430-434

Keywords: 分离变分不等式,Levitin-Polyak-,α适定性的Furi-Vignoli型度量刻画.

Full-Text   Cite this paper   Add to My Lib

Abstract:

首先在Banach空间中给出了分离变分不等式的Levitin-Polyak-α适定性的概念.然后讨论了分离变分不等式解集的等价表述.最后,给出了分离变分不等式的Levitin-Polyak-α适定性的Furi-Vignoli型度量刻画.

References

[1]  Tykhonov A N. On the stability of the functional optimization problem[J]. USSR J Comput Math Phys,1996,6:631-634.
[2]  Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problem[J]. Soveit Math Dokl,1996,7:764-767.
[3]  Zolezzi T. Well-posedness criteria in optimization with application to the calculus of variations[J]. Nonlinear Anal:TMA,1995,25:437-453.
[4]  Zolezzi T. Well-posedness of optimal control problems[J]. Control and Cybernetics,1994,23:289-301.
[5]  Zolezzi T. Extend well-posedness of optimization problems[J]. J Optim Theo Appl,1996,91:257-266.
[6]  Bednarczuk E M. Well-posedness of optimization problem[C]//Krabs J J W. Recent Advances and Historical Development of Vector Optimization Problems. Lecture Notes in Economics and Mathematical Systems. 294. Berlin:Springer,1987:51-61.
[7]  Fang Y P, Hu R. Parametric well-posedness for variational inequalities defined by bifunctions[J]. Comput Math Appl,2007,53:1306-1316.
[8]  Cavazzuti E, Morgan J. Well-posed saddle point problems[C]//Hirriart-Urruty J B, Oettli W, Stoer J. Optimization, Theory and Algorithms. New York:Marcel Dekker,1983:61-76.
[9]  Margiocco M, Pusillo F, Pusillo L. Metric characterizations of Tikhonov well-posedness in value[J]. J Optim Theo Appl,1999,100(2):377-387.
[10]  Yang H, Yu J. Unified approaches to well-posedness with some applications[J]. J Global Optim,2005,31:371-381.
[11]  Lucchetti R, Patrone F. A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities[J]. Num Funct Anal Optim,1981,3(4):461-476.
[12]  Fang Y P, Huang N J, Yao J C. Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems[J]. J Global Optim,2008,41:117-133.
[13]  Ceng L C, Yao J C. Well-posed of generalized mixed variational inequalities, inclusion problems and fixed-point problems[J]. Nonlinear Anal:TMA,2008,69:4585-4603.
[14]  Censor Y, Gibali A, Reich S. The Split Variational Inequality Problem[M]. Haifa:The Technion-Israel Institute of Technology,2010.
[15]  Moudafi A. Split monotone variational inclusions[J]. J Optim Theo Appl,2011,150(2):275-283.
[16]  Long X J, Huang N J, Teo K L. Levitin-Polyak well-posedness for equilibrium problems with functional constraints[J]. J Inequal Appl,2008,2008:657329.
[17]  Hu R, Fang Y P. Levitin-Polyak well-posedness of variational inequalities[J]. Nonlinear Anal:TMA,2010,72:373-381.
[18]  Kuratowski K. Topology:1 and 2[M]. New York:Academic Press,1968.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133