全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类非线性Dirichlet问题的多重解

, PP. 231-235

Keywords: p-Laplacian,Ricceri三临界点定理,变分方法,Dirichlet问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

对一类具有p-Laplace算子的拟线性微分方程特征值Dirichlet问题采用变分法和Ricceri三临界点定理进行了探讨,在一些更易验证的条件下,证明了其在W1,p0(a,b)上至少3个弱解存在的充分条件,这也从研究方法上推广了现有文献的结果.而且,作为应用,还给出了一个例子说明文中结论的正确性.

References

[1]  Lü H S, O'Regan D, Zhong C K. Multiple positive solutions for the one-dimensional singular p-Laplacian[J]. Appl Math Comput,2002,133:407-422.
[2]  Wang Z Y, Zhang J H. Positive solutions for one-dimensional p-Laplacian boundary value problems with dependence on the first order derivative[J]. J Math Anal Appl,2006,314:618-630.
[3]  Lee Y H, Sim I. Existence results of sign-changing solutions for singular one-dimensional p-Laplacian problems[J]. Nonl Anal,2008,68:1195-1209.
[4]  李相锋,许万银. 一类拟线性Neumann特征值问题的多重解[J]. 西南大学学报:自然科学版,2009,31(1):1-4.
[5]  许万银. 一类拟线性Neumann问题的多重解[J]. 山东大学学报:理学版,2009,44(10):39-42.
[6]  Bonannao G. Some remarks on a three critical points theorem[J]. Nonl Anal,2003,54:651-665.
[7]  Bonannao G. A minimax inequality and its applications to ordinary differential equations[J]. J Math Anal Appl,2002,270:210-229.
[8]  Afrouzi G A, Heidarkhani S. Existence of three solutions for a boundary value problems in one-dimensional case[J]. J Nonl Sci,2007,4(1):76-80.
[9]  Cheng J G, Shao Y F. The positive solutions of boundary value problems for a class of one-dimensional p-Laplacians[J]. Nonl Anal,2008,68:883-891.
[10]  Svatoslav S. Existence of positive solutions to semipositone singular Dirichlet boundary value problems[J]. Acta Math Sinica:Eng Ser,2006,22(6):1891-1914.
[11]  袁红秋,张绍康,康道坤. 一维p-Laplacian方程多解的存在性[J]. 四川师范大学学报:自然科学版,2010,33(5):635-637.
[12]  陈顺清. 二阶p-Laplacian算子方程的正周期解[J]. 四川师范大学学报:自然科学版,2008,31(2):155-158.
[13]  李相锋. 具有p-Laplacian拟线性特征值Dirichlet问题的多重解[J]. 吉林大学学报:理学版,2008,46(4):633-637.
[14]  Zeidler E. Nonlinear Functional Analysis and Its Applications[M]. Berlin:Springer,1990.
[15]  Ricceri B. On a three critical points theorem[J]. Arch Math,2000,75:220-226.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133