全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黏性Cahn-Hilliard方程弱解的存在唯一性

, PP. 227-230

Keywords: 黏性Cahn-Hilliard方程,弱解,Galerkin方法,存在性,唯一性

Full-Text   Cite this paper   Add to My Lib

Abstract:

粘性Cahn-Hilliard方程在研究粘稠二元合金的一阶相变动力学中发挥着重要作用.方程解的存在性和唯一性一直是方程研究的重点,也是研究解的动力学行为和特征的基础.首先利用Galerkin近似方法得到截断解,通过先验估计得到截断解的有界性,验证了整体弱解的存在性,最后证明了黏性Cahn-Hilliard方程的弱解的唯一性.

References

[1]  Dlotko T. Global attractor for the Cahn-Hilliard equation in H2 and H3[J]. J Diff Eqns,1994,113:381-393.
[2]  Li D, Zhong C K. Global attractor for the Cahn-Hilliard system with fast growing nonlinearity[J]. J Diff Eqns,1998,149:191-210.
[3]  Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics[M]. Berlin:Springer-Verlag,1997.
[4]  Novick-Cohen A. On the viscous Cahn-Hilliard equation[C]//Ball J. Material Instabilities in Continuum Mechanics and Related Mathematical Problems. Oxford:Clarendon Press,1988.
[5]  Bai F, Elliott C M. The viscous Cahn-Hilliard equation,Part I:Computations[J]. Nonliearity,1995,8:131-160.
[6]  Elliott C M, Stuart A M. The viscous Cahn-Hilliard equation,Part I:Analysis[J]. J Diff Eqns,1996,128:387-414.
[7]  Yin J X, Liu C C. Viscous Cahn-Hilliard equation with concentration dependent mobility[J]. Northeast Math J,2002,18(3):266-272.
[8]  Hunag R, Yin J X. Global existence and blow-up of solutions to multi-dimensional(n ≤5)viscous Cahn-Hilliard equation[J]. Northeast Math J,2005,21(3):371-378.
[9]  Ke Y Y, Yin J X. A note on viscous Cahn-Hilliard equation[J]. Northeast Math J,2004,20(1):101-108.
[10]  刘长春. 粘性Cahn-Hilliard 方程的径向解[J]. 工程数学学报,2004,21(2):233-237.
[11]  杨晓侠,张显文. 广义Tjon-Wu 方程Chauchy 问题强解的存在唯一性和稳态解的存在性[J]. 高校应用数学学报,2009,24(4):483-492.
[12]  张兴秋. 奇异四阶积分边值问题正解的存在唯一性[J]. 数学学报,2010,33(1):38-50.
[13]  李小娜,李宏飞,崔艳兰. 一类单调二元算子方程组解的存在唯一性定理[J]. 西南师范大学学报:自然科学版,2010,35(3):46-49.
[14]  Cahn J W, Hilliard J E. Free energy of a nonuniform system:interfacial energy[J]. J Chem Phys,1958,28:258-267.
[15]  Cholewa J W, Dlotko T. Global attractor of the Cahn-Hilliard system[J]. Bull Austral Math Soc,1994,49:277-292.
[16]  颜宝平. 带扰动倒向随机微分方程解的存在唯一性[J]. 四川师范大学学报:自然科学版,2008,31(3):289-292.
[17]  Evans L C. Partial Differential Equations[M]. Providence:Am Math Soc,1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133