OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
正则图的代数连通度
, PP. 219-221
Keywords: 正则图,拉普拉斯矩阵,代数连通度
Abstract:
设G=(V,E)是一个具有n个顶点的简单图,A(G)是G的邻接矩阵,D(G)表示G的度对角矩阵,图G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).若矩阵L(G)的特征值为μ1≥μ2≥…≥μn-1≥μn=0,则称μn-1为G的代数连通度.研究了正则图的代数连通度,得到了下列结论μn-1≤(nrln(n-1))/(6n-8-4r-nln(n-1)),这里,r表示正则图的度.
References
[1] | 徐俊明. 组合网络理论[M]. 北京:科学出版社,2007.
|
[2] | Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Math J,1973,23:298-305.
|
[3] | Abreu N M. Old and new results on algebraic connectivity of graphs[J]. Line Alge Appl,2007,423(1):53-73.
|
[4] | Patra K L, Lal A K. The effect on the algebraic connectivity of a tree by grafting or collapsing of edges[J]. Line Alge Appl,2008,428:855-864.
|
[5] | Kirkland S. An upper bound on algebraic connectivity of graphs with many cutpoints[J]. Elec J Line Alge,2001,8:94-109.
|
[6] | Grone R, Merris R. Algebraic connectivity of trees[J]. Czechoslovak Math J,1987,37:660-670.
|
[7] | Grone R, Merris R. Ordering trees by algebraic connectivity[J]. Graphs and Combinatorics,1990,6(3):229-237.
|
[8] | Kirkland S, Neumann M. Algebraic connectivity of weighted trees under perturbation[J]. Line Mult Alge,1997,42:187-203.
|
[9] | Bapat R B, Pati S. Algebraic connectivity and the characteristic set of a graph[J]. Line Mult Alge,1998,45:247-273.
|
[10] | 周峰,黄廷祝,赵熙乐. 关于图的Laplacian谱半径上界两个重要结果的新证明[J]. 四川师范大学学报:自然科学版,2009,32(6):738-740.
|
[11] | 汪天飞,李彬. 图的拉普拉斯谱半径的新上界[J]. 四川师范大学学报:自然科学版,2010,33(6):487-490.
|
[12] | 刘颖,邵嘉裕,袁西英. 具有完美匹配树的代数连通度的排序[J]. 数学进展,2008,37(3):269-282.
|
[13] | 管宇,张晓东,徐光辉. 树的变形与代数连通度[J]. 应用数学学报,2011,34(2):341-352.
|
[14] | 顾磊,袁炜罡,张晓东. 给定最大度的树的代数连通度[J]. 华东师范大学学报:自然科学版,2011(3):29-34.
|
[15] | Mohar B. Eigenvalues, diameter and mean distance in graphs[J]. Graphs and Combinatorics,1991,7(1):53-64.
|
[16] | 林晓霞. 若干图类的Wiener指数的极值[J]. 运筹学学报,2010,14(2):55-60.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|