全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

半正定单调变分不等式CPC算法的O(1/t)收敛率

, PP. 209-213

Keywords: 半正定变分不等式问题,CPC算法,收敛率

Full-Text   Cite this paper   Add to My Lib

Abstract:

半正定单调变分不等式CPC算法只需要计算迭代点的函数值,可以解决一类没有显式表达式的半正定单调变分不等式问题.最近A.Nemirovski(SIAMJOptimiz,2005,15229-251.)给出的prox-类算法的计算复杂性分析表明了外梯度算法在满足单调Lipschitz-连续时具有O(1/t)的收敛率;随后相关文献在一定的条件下给出了投影收缩算法、交替方向法和Douglas-Rachford法的计算复杂性分析.受到上述计算复杂性工作的启发,利用半正定单调变分不等式的基本性质和柯西施瓦兹不等式,在一定的假设条件下,给出了半正定单调变分不等式CPC算法O(1/t)收敛率的证明.

References

[1]  Seetharama M, Yoon S G. On semidefinite complementarity problems[J]. Math Programm,2000,A88:575-587.
[2]  Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems:I and II[M]. New York:Springer-Verlag,2003.
[3]  Li M, Shao H, He B S. An inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities[J]. Math Method Oper Res,2007,66(2):183-201.
[4]  丁协平,林炎诚,姚任之. 解变分不等式的三步松弛混合最速下降法[J]. 应用数学与力学,2007,28(8):921-928.
[5]  Ding X P. Auxiliary principle and iterative algorithm for a new system of generalized mixed equilibrium problems in Banach spaces[J]. Appl Math Comput,2011,218(7):3507-3514.
[6]  Xia F Q, Huang N J. A projection-proximal point algorithm for solving generalized variational inequalities[J]. J Optim Theo Appl,2011,150:98-117.
[7]  Tseng P. Merit functions for semidefinite complementarity problems[J]. Math Programm,1998,83:159-185.
[8]  Sun J, Sun D, Qi L. A smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems[J]. SIAM J Optim,2004,14:783-806.
[9]  Han D R. On the coerciveness of some merit functions for complementarity problems over symmetric cones[J]. J Math Anal Appl,2007,336(1):727-737.
[10]  Monteiro R D C, Zanjacomo P R. General interior-point maps and existence of weighted paths for nonlinear semidefinite complementarity problems[J]. Math Oper Res,2000,25(3):381-399.
[11]  Sim C K, Zhao G. Asymptotic behavior of Helmberg-Kojima-Monteiro(HKM)paths in interior-point methods for monotone semidefinite linear complementarity problems:general theory[J]. J Optim Theo Appl,2008,137:11-25.
[12]  Sun J, Zhang S. A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs[J]. Eur J Oper Res,2010,207(3):1210-1220.
[13]  He B S, Liao L Z. Improvements of some projection methods for monotone nonlinear variational inequalities[J]. J Optim Theo Appl,2002,112(1):111-128.
[14]  徐海文,张黔川,杨成,等. 半正定单调变分不等式的CPC算法[J]. 四川师范大学学报:自然科学版,2009,32(4):450-453.
[15]  Nemirovski A. Prox-method with rate of convergence O(1/t) for variational inequality with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[J]. SIAM J Optim,2005,15:229-251.
[16]  He B S. On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators[EB/OL]//http://www.optimization-online.org/DB_FILE/2011/07/3097.pdf.
[17]  He B S, Yuan X M. On the O(1/t)convergence rate of alternating direction method[EB/OL]//http://www.optimization-online.org/DB_FILE/2011/09/3157.pdf.
[18]  He B S, Yuan X M. Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective[J]. SIAM J Imaging Sci,2012(5):119-149.
[19]  He B S, Yuan X M. On convergence rate of the Douglas-Rachford operator splitting method[EB/OL]//http://www.optimization-online.org/DB_FILE/2011/12/3276.pdf.
[20]  Nesterov Y E. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)[J]. Dokl Akad Nauk SSSR,1983,269:543-547.
[21]  Villa S, Salzo S, Baldassarre L, et al. Accelerated and inexact forward-backward algorithms[EB/OL]//http://www.optimization-online.org/DB_FILE/2011/08/3132.pdf.
[22]  Bhatia R. Matrix Analysis[M]. New York:Springer-Verlag,1997.
[23]  Horn R A, Johnson C R. Topics in Matrix Analysis[M]. Cambridge:Cambridge University Press,1991.
[24]  Xia F Q, Huang N J. Auxiliary principle and iterative algorithms for lions-stampacchia variational inequalities[J]. J Optim Theo Appl,2009,140:377-389.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133