Seetharama M, Yoon S G. On semidefinite complementarity problems[J]. Math Programm,2000,A88:575-587.
[2]
Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems:I and II[M]. New York:Springer-Verlag,2003.
[3]
Li M, Shao H, He B S. An inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities[J]. Math Method Oper Res,2007,66(2):183-201.
Ding X P. Auxiliary principle and iterative algorithm for a new system of generalized mixed equilibrium problems in Banach spaces[J]. Appl Math Comput,2011,218(7):3507-3514.
[6]
Xia F Q, Huang N J. A projection-proximal point algorithm for solving generalized variational inequalities[J]. J Optim Theo Appl,2011,150:98-117.
[7]
Tseng P. Merit functions for semidefinite complementarity problems[J]. Math Programm,1998,83:159-185.
[8]
Sun J, Sun D, Qi L. A smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems[J]. SIAM J Optim,2004,14:783-806.
[9]
Han D R. On the coerciveness of some merit functions for complementarity problems over symmetric cones[J]. J Math Anal Appl,2007,336(1):727-737.
[10]
Monteiro R D C, Zanjacomo P R. General interior-point maps and existence of weighted paths for nonlinear semidefinite complementarity problems[J]. Math Oper Res,2000,25(3):381-399.
[11]
Sim C K, Zhao G. Asymptotic behavior of Helmberg-Kojima-Monteiro(HKM)paths in interior-point methods for monotone semidefinite linear complementarity problems:general theory[J]. J Optim Theo Appl,2008,137:11-25.
[12]
Sun J, Zhang S. A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs[J]. Eur J Oper Res,2010,207(3):1210-1220.
[13]
He B S, Liao L Z. Improvements of some projection methods for monotone nonlinear variational inequalities[J]. J Optim Theo Appl,2002,112(1):111-128.
Nemirovski A. Prox-method with rate of convergence O(1/t) for variational inequality with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[J]. SIAM J Optim,2005,15:229-251.
[16]
He B S. On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators[EB/OL]//http://www.optimization-online.org/DB_FILE/2011/07/3097.pdf.
[17]
He B S, Yuan X M. On the O(1/t)convergence rate of alternating direction method[EB/OL]//http://www.optimization-online.org/DB_FILE/2011/09/3157.pdf.
[18]
He B S, Yuan X M. Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective[J]. SIAM J Imaging Sci,2012(5):119-149.
[19]
He B S, Yuan X M. On convergence rate of the Douglas-Rachford operator splitting method[EB/OL]//http://www.optimization-online.org/DB_FILE/2011/12/3276.pdf.
[20]
Nesterov Y E. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)[J]. Dokl Akad Nauk SSSR,1983,269:543-547.
[21]
Villa S, Salzo S, Baldassarre L, et al. Accelerated and inexact forward-backward algorithms[EB/OL]//http://www.optimization-online.org/DB_FILE/2011/08/3132.pdf.
[22]
Bhatia R. Matrix Analysis[M]. New York:Springer-Verlag,1997.
[23]
Horn R A, Johnson C R. Topics in Matrix Analysis[M]. Cambridge:Cambridge University Press,1991.
[24]
Xia F Q, Huang N J. Auxiliary principle and iterative algorithms for lions-stampacchia variational inequalities[J]. J Optim Theo Appl,2009,140:377-389.