全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类新的非线性时滞积分不等式及其应用

, PP. 180-183

Keywords: 积分不等式,时滞,边值问题,有界性

Full-Text   Cite this paper   Add to My Lib

Abstract:

在文献(C.J.Chen,W.S.Cheung,D.Zhao.J.Inequ.Appl.,2009,2009258569.)的基础上研究了一类更广泛的非线性时滞积分不等式,增加了两项非线性因子.尤其是参考文献中不等式右端的第一个积分项只含有未知函数的线性因子,而研究的不等式右端的第一个积分项包含了未知函数的非线性因子.最后,把研究不等式得到的结果用于研究微分方程解的估计.

References

[1]  Kim Y H. Gronwall, Bellman and Pachpatte type integral inequalities with applications[J]. Nonl Anal,2009,71:2641-2656.
[2]  郑克龙,胡劲松. 非线性时滞Gronwall-like不等式的推广[J]. 重庆工学院学报:自然科学版,2007,21(7):66-69.
[3]  韩玉良,俞元洪. 两个新的积分不等式及其离散类似[J]. 数学研究与评论,2007,27(4):781-786.
[4]  吴宇. 关于一类弱奇性Volterra积分不等式的注记[J]. 四川师范大学学报:自然科学版,2008,31(5):534-537.
[5]  孟东沉,孟凡伟. 一类新型具有两个独立变量的不连续函数的积分不等式[J]. 系统科学与数学,2009,29(4):440-450.
[6]  周俊. 关于一个积分不等式组的讨论[J]. 四川大学学报:自然科学版,2009,46(1):21-25.
[7]  王五生. 一个推广的二变量时滞积分不等式及其应用[J]. 系统科学与数学,2010,30(3):425-432.
[8]  王五生. 一类非连续函数积分不等式中未知函数的估计[J]. 四川师范大学学报:自然科学版,2011,34(1):43-46.
[9]  Lipovan O. A retarded Gronwall-like inequality and its applications[J]. J Math Anal Appl,2000,252:389-401.
[10]  Agarwal R P, Deng S, Zhang W. Generalization of a retarded Gronwall-like inequality and its applications[J]. Appl Math Comput,2005,165:599-612.
[11]  Agarwal R P, Kim Y H, Sen S K. New retarded integral inequalities with applications[J]. J Inequ Appl,2008,2008:908784.
[12]  Cheung W S. Some new nonlinear inequalities and applications to boundary value problems[J]. Nonl Anal,2006,64:2112-2128.
[13]  Chen C J, Cheung W S, Zhao D. Gronwall-Bellman-type integral inequalities and applications to BVPs[J]. J Inequ Appl,2009,2009:258569.
[14]  Gronwall T H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[J]. Ann Math,1919,20:292-296.
[15]  Bellman R. The stability of solutions of linear differential equations[J]. Duke Math J,1943,10:643-647.
[16]  Zhang W, Deng S. Projected Gronwall-Bellman's inequality for integrable functions[J]. Math Comput Model,2001,34:394-402.
[17]  Wang W S. A generalized retarded Gronwall-like inequality in two variables and applications to BVP[J]. Appl Math Comput,2007,191(1):144-154.
[18]  Wang W S. Estimation on certain nonlinear discrete inequality and applications to boundary value problem[J]. Adv Difference Eqns,2009,2009:708587.
[19]  Choi S K, Deng S, Koo N J, et al. Nonlinear integral inequalities of Bihari-Type without class . Math Inequ Appl,2005,8(4):643-654.
[20]  Xu R, Sun Y G. On retarded integral inequalities in two independent variables and their applications[J]. Appl Math Comput,2006,182:1260-1266.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133