全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stokes问题的L2局部投影稳定化有限元方法

, PP. 160-164

Keywords: Stokes问题,L2局部投影,误差估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了Stokes问题的稳定化有限元方法.对于该问题传统的混合有限元方法求解要求速度和压力的有限元空间组合满足离散的inf-sup条件,为了去掉这一条件的限制,基于非残差的稳定化格式相继被提出,但这些稳定格式都是弱相容的.基于局部投影思想,对Stokes问题提出了一个强相容的稳定化有限元格式,利用有限元空间正交性,证明了此格式在速度和压力有限元空间无需满足B-B条件的情况下,解的存在性和唯一性,并得到了速度和压力相应的误差估计.

References

[1]  Girault V, Raviart P A. Finite Element Methods for the Navier-Stokes Equations[M]. New York:Springer-Verlag,1986.
[2]  Kellogg B R, Liu B Y. A finite element method for the compressible Stokes equation[J]. SIAM J Num Anal,1996,33:780.
[3]  Hughes T, Franca L, Balestra M. A new finite element formulation for computational fluid dynamatics.V.Circumventing the Babuska-Brezzi:a stable Petrov-Galerkin formulation of the Stokes problem accomodation equal-order interpolation[J]. Comput Methods Appl Mech Eng,1986,59:85-99.
[4]  Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem[J]. Num Math,1988,53:225-235.
[5]  Bochev P B, Gunzberger M D. Anslysis of least-squares finite element methods for the Stokes equations[J]. Math Comput,1994,63:479-506.
[6]  Hansbo P, Szepessy A. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations[J]. SIAM J Num Anal,2006,44:82-101.
[7]  Zhou T X, Feng M F. A least squares Petro-Galerkin finite element methods for the stationery Navier-Stokes equations[J]. Math Comput,1993,60:531-541.
[8]  骆艳,冯民富. Stoke 方程的压力梯度局部投影间断有限元法[J]. 计算数学,2008,30:25-36.
[9]  Codina R, Blasc J. A finite element formulation for the stokes problem allowing equal veloeity-pressure interpolation[J]. Comput Methods Appl Meeh Eng,1994,113:172-182.
[10]  Beckr R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J]. Calcolo,2001,38:173-199.
[11]  Kamel N, Andrew J. Local projection stabilized Galerkin approximation for the generalized Stokes problem[J]. Comput Methods Appl Mech Eng,2009,198:5-8.
[12]  Ciarlet Ph G. The Finite Element Method for Elliptic Problems[M]. Amsterdam:North Holland,1978.
[13]  Clément P. Approximation by finite element functions using local regulation[J]. RAIRO Anal Num,1975,9:77-84.
[14]  Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions[J]. Math Comput,1990,54:483-493.
[15]  Matthles G, Skrzypacz P, Tobiska L. A unified convergence analysis for local projection stabilizations applied to the Oseen problem[J]. ESAIM:Math Model Num Anal,2007,41:713-742.
[16]  Giraut V, Raviart P. Finite Element Methods for Navier-Stokes Equations[M]. Berlin:Springer-Verlag,1986.
[17]  Braack M, Buramn E, John V, et al. Stabilized finite element methods for the generalized Oseen problem[J]. Comput Methods Appl Mech Eng,2007,196:853-866.
[18]  Braack M, Buramn E. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method[J]. SIAM J Num Anal,2006,43:2544-2566.
[19]  Duan H, Lin P, Saikrishnan P, et al. L2-projected least-squares finite element methods for the stokes equations[J]. SIAM J Num Anal,2007,44:732-752.
[20]  Condia R. Analysis of a stabilized finite element approximation of the Oseen equations Using Orthogonal subscales[J]. Appl Num Math,2008,58:264-283.
[21]  Araya R, Barrenchea G R, Valentin F. Stabilized finite element methods based on multiscale enrichment for the Stokes problem[J]. SIAM J Num Anal,2006,44:322-348.
[22]  Zhang S. A new family of stable mixed finite elements for the 3D Stokes equations[J]. Math Comput,2005,74:543-554.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133