Girault V, Raviart P A. Finite Element Methods for the Navier-Stokes Equations[M]. New York:Springer-Verlag,1986.
[2]
Kellogg B R, Liu B Y. A finite element method for the compressible Stokes equation[J]. SIAM J Num Anal,1996,33:780.
[3]
Hughes T, Franca L, Balestra M. A new finite element formulation for computational fluid dynamatics.V.Circumventing the Babuska-Brezzi:a stable Petrov-Galerkin formulation of the Stokes problem accomodation equal-order interpolation[J]. Comput Methods Appl Mech Eng,1986,59:85-99.
[4]
Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem[J]. Num Math,1988,53:225-235.
[5]
Bochev P B, Gunzberger M D. Anslysis of least-squares finite element methods for the Stokes equations[J]. Math Comput,1994,63:479-506.
[6]
Hansbo P, Szepessy A. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations[J]. SIAM J Num Anal,2006,44:82-101.
[7]
Zhou T X, Feng M F. A least squares Petro-Galerkin finite element methods for the stationery Navier-Stokes equations[J]. Math Comput,1993,60:531-541.
Codina R, Blasc J. A finite element formulation for the stokes problem allowing equal veloeity-pressure interpolation[J]. Comput Methods Appl Meeh Eng,1994,113:172-182.
[10]
Beckr R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J]. Calcolo,2001,38:173-199.
[11]
Kamel N, Andrew J. Local projection stabilized Galerkin approximation for the generalized Stokes problem[J]. Comput Methods Appl Mech Eng,2009,198:5-8.
[12]
Ciarlet Ph G. The Finite Element Method for Elliptic Problems[M]. Amsterdam:North Holland,1978.
[13]
Clément P. Approximation by finite element functions using local regulation[J]. RAIRO Anal Num,1975,9:77-84.
[14]
Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions[J]. Math Comput,1990,54:483-493.
[15]
Matthles G, Skrzypacz P, Tobiska L. A unified convergence analysis for local projection stabilizations applied to the Oseen problem[J]. ESAIM:Math Model Num Anal,2007,41:713-742.
[16]
Giraut V, Raviart P. Finite Element Methods for Navier-Stokes Equations[M]. Berlin:Springer-Verlag,1986.
[17]
Braack M, Buramn E, John V, et al. Stabilized finite element methods for the generalized Oseen problem[J]. Comput Methods Appl Mech Eng,2007,196:853-866.
[18]
Braack M, Buramn E. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method[J]. SIAM J Num Anal,2006,43:2544-2566.
[19]
Duan H, Lin P, Saikrishnan P, et al. L2-projected least-squares finite element methods for the stokes equations[J]. SIAM J Num Anal,2007,44:732-752.
[20]
Condia R. Analysis of a stabilized finite element approximation of the Oseen equations Using Orthogonal subscales[J]. Appl Num Math,2008,58:264-283.
[21]
Araya R, Barrenchea G R, Valentin F. Stabilized finite element methods based on multiscale enrichment for the Stokes problem[J]. SIAM J Num Anal,2006,44:322-348.
[22]
Zhang S. A new family of stable mixed finite elements for the 3D Stokes equations[J]. Math Comput,2005,74:543-554.