全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类非线性偏微分方程的级数解

, PP. 157-159

Keywords: 非线性发展方程,优化系统,级数解

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用李对称分析的相关理论和方法研究了一类非线性发展方程,获得了其有限维的李对称.进一步,通过向量场的伴随表示构造一维的优化系统.基于此优化系统,获得了原方程的4类约化系统以及包括级数解在内的群不变解.

References

[1]  周钰谦,张健,刘倩. 耦合Klein-Gordon-Schrodinger方程显示解的统一构造[J]. 四川师范大学学报:自然科学版,2006,29(2):166-170.
[2]  周钰谦,张健,曾德胜. 耦合Klein-Gordon-Schrodinger方程的新显示解[J]. 四川师范大学学报:自然科学版,2006,29(1):46-49.
[3]  Lan K L, Wang H B. Exact solutions for two nonlinear equations: I[J]. J Phys,1990,A23:3923-3928.
[4]  Parkes E J, Duffy B R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations[J]. Comput Phys Commun,1996,98:288-300.
[5]  Fu Z T, Liu S K, Liu S D. New exact solutions to the KdV-Burgers-Kuramoto equation[J]. Chaos Soliton Fract,2005,23:609-616.
[6]  Zhang S. New exact solutions of the KdV-Burgers-Kuramoto equation[J]. Phys Lett,2006,A358:414-420.
[7]  Khuri S A. Traveling wave solutions for nonlinear differential equations: a unified Ans?tze approach[J]. Chaos Soliton Fract,2007,32:252-258.
[8]  Olver P J. Application of Lie Groups to Differential Equations[M]. New York:Springer-Verlag,1986. Series Solutions of a Type of Nonlinear Evolution Equation LIU Qian1, ZHOU Yu-qian2, DU Xian-yun3 (1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan; 2. College of Computer Science and Technology, Southwest University for Nationalities, Chengdu 610041, Sichuan; 3. College of Mathematics, Chengdu University of Information Technology, Chengdu 610225, Sichuan) Abstract:In this paper, the Lie symmetry method is performed on a type of nonlinear evolution equation, the finite dimensional Lie symmetry is obtained. Furthermore, by the adjoint representation, the one dimensional optimal system is constructed. Based on it, four types of reduced systems and the corresponding group-invariant solutions including the power series solutions are obtained. Key words:nonlinear evolution equation; optimal system; series solution 2000 MSC:35Q20; 35Q53
[9]  Liu S D, Liu S K, Huang Z H, et al. On a class of nonlinear Schr?dinger equations III[J]. Prog Natural Sci,1999,9:912-918.
[10]  刘倩,周钰谦,刘合春. 广义Hirota-Satsuma耦合KdV方程的精确解[J]. 四川师范大学学报:自然科学版,2011,34(3):335-339.
[11]  刘倩,周钰谦. 二维Klein-Gordon-Zakharov方程新孤波解的构造[J]. 四川师范大学学报:自然科学版,2010,33(3):335-338.
[12]  Kawahara T. Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation[J]. Phys Rev Lett,1983,51:381-383.
[13]  Kudryashov N A. Exact solutions of the generalized Kuramoto-Sivashinsky equation[J]. Phys Lett,1990,A147:287-291.
[14]  Kudryashov N A, Zargaryan E D. Solitary waves in active-dissipative dispersive media[J]. J Phys,1996,A29:8067-8077.
[15]  Sivashinsky G I. Large cells in nonlinear marangoni convection[J]. Physica,1982,D4:227-235.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133