全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维空间中一类扰动波方程整体解的渐近性

, PP. 171-175

Keywords: 扰动波方程,整体解,形式近似解

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了三维空间中一类波动方程柯西问题整体解的渐近性,在较弱的条件下运用不动点理论和扰动方法得到了这类波动方程柯西问题在C2空间中整体解的存在唯一性及形式近似解的渐近合理性,推广了近期文献中相关的某些结果

References

[1]  Lai S Y. The asymptotic theory of semilinear perturbed telegraph equation and its application[J]. Appl Math Mech,1997,18(7):657-662.
[2]  陈静,赖绍永. 一类弱半线性电报方程解的渐近理论[J]. 四川师范大学学报:自然科学版,2006,29(6):655-658.
[3]  宋志华. 一类非线性发展方程的整体解的存在性及渐近性[J]. 郑州大学学报:理学版,2006,38(2):13-19.
[4]  刘诗焕,钟越,黄文毅,等. 一类阻尼Boussinesq方程初边值问题的整体解[J]. 四川师范大学学报:自然科学版,2007,30(3):275-279.
[5]  蔡红梅,陈静,赖绍永. 一类电报方程解的双扰动研究[J]. 四川师范大学学报:自然科学版,2007,30(3):313-317.
[6]  陈静,青音. 一类广义半线性电报方程整体解的存在性[J]. 四川师范大学学报:自然科学版,2008,31(1):34-37.
[7]  罗宏,蒲志林,周亚非. NavierStokes方程的渐近吸引子[J]. 广西师范大学学报:自然科学版,2009,27(2):38-41.
[8]  李红,宋长明. 一类具弱阻尼的奇性扰动Boussinesq型方程的渐近性质[J]. 四川师范大学学报:自然科学版,2008,31(5):558-561.
[9]  Asakura F. Existence of a global solution to a semilinear wave equation with slowly decreasing initial data in three space dimensions[J]. Commun Part Diff Eqns,1986,11(14):1459-1487.
[10]  Lai S Y, Mu C L. The asymptotic theory of initial value problems for semilinear wave equations in three space dimensions[J]. Appl Math-JCU,1997,B12:321-332.
[11]  Van Horssen W T. An asymptotic theory for a class of initial boundary value problems for weakly nonlinear wave equation with an application to a model of the galloping oscillation of overhead transmission lines[J]. SIAM J Appl Math,1988,48(6):1227-1243.
[12]  Van Horssen W T, Van Der Burgh A H P. On initial boundary value problems for weakly semilinear telegraph equations asymptotic theory and application[J]. SIAM J Appl Math,1988,48(4):719-736.
[13]  Van Horssen W T. Asymptotics for a class of semilinear hyperbolic equations with an application to a problem with a quadratic nonlinearity [J]. Nonlinear Analysis:TMA,1992,19(6):501-530.
[14]  Lai S Y, Xu Y, Wu Y H. The asymptotic theory of global solutions for semilinear wave equations in three space dimensions[J]. Comput Math Appl,2004,47(10/11):1535-1543.
[15]  Guenther R B, Lee J W. Partial Differential Equations of Mathematical Physics and Integral Equations[M]. New Jersey:Prentice Hall,1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133