Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems\[M\]. New York:Springer-Verlag,1989.
[2]
Tang L. Existence and multiplicity of periodic solutions for nonautonomous second order systems\[J\]. Nonlinear Anal,1998,32:299-304.
[3]
Ding Y H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems\[J\]. Nonlinear Anal,1995,25(11):1095-1113.
[4]
Liu Z L, Su J B, Wang Z Q. A twist condition and periodic solutions of Hamiltonian systems\[J\]. Adv Math,2008,218(6):1895-1913.
[5]
Zhang S Q. Symmetrically homoclinic orbits for symmetric Hamiltonian systems\[J\]. J Math Anal Appl,2000,247(2):645-652.
[6]
Yang R G, Deng X C. Periodic solutions for some Hamiltonian systems\[J\]. J Math Anal Comput,2009,31:309-315.
[7]
Wang Z Y, Zhang J H. Periodic solutions of a class of second order non-autonomous Hamiltonian systems\[J\]. Nonlinear Anal,2010,72(12):4480-4487.
[8]
Zhang Z T, Li S J. On sign-changing and multiple solutions of the p-Laplacian\[J\]. J Funct Anal,2003,197(2):447-468.
[9]
Lv H S, Zhong C K. A note on singular nonlinear boundary value problems for the one-dimensional p-Laplacian\[J\]. Appl Math Lett,2001,14(2):189-194.
[10]
Mansevich R, Mawhin J. Periodic solutions for nonlinear systems with p-Laplacian-like operators\[J\]. J Diff Eq,1998,145(2):367-393.
[11]
Jiu Q S, Su J B. Existence and multiplicity results for Dirichlet problems with p-Laplacian\[J\]. J Math Anal Appl,2003,281(2):587-601.
[12]
Tian Y, Ge W G. Periodic solutions of nonautonomous second order systems with p-Laplacian\[J\]. Nonlinear Anal,2007,66:192-203.
[13]
Pasca D, Tang C L. Some existence results on periodic solutions of nonautonomous second-order differential systems with(q, p)-Laplacian\[J\]. Appl Math Lett,2010,23:246-251.