全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

混合平衡问题组及不动点问题公解的算法

, PP. 656-662

Keywords: 混合平衡问题,不动点,无限族的非扩张映象,η-强凸函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

最近,文献(J.Comput.Appl.Math.,2008,214186-201.)讨论了关于有限个非扩张映象的解集与一个混合平衡问题的不动点集的公共元的迭代序列.受他们的启发,介绍了一种新的迭代算法,在Hilbert空间的框架下,用以寻求混合平衡问题组的解集与无限族的非扩张映象的不动点集的公共元.在适当条件下,逼近于这一公共元的强收敛定理被证明.所得结果是新的,它改进和推广了最近一些人的最新结果.

References

[1]  Ding X P, Lin Y C, Yao J C. Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium promblems\[J\]. Appl Math Mech,2006,27:1157-1164.
[2]  Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces\[J\]. J Math Anal Appl,2007,331(1):506-515.
[3]  Yao Y H, Liou Y C, Yao J C. Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings\[J\]. Fixed Point Theo Appl,2007,2007:064363.
[4]  丁协平. Bananch 空间内广义混合隐平衡问题组的可解性\[J\]. 四川师范大学学报:自然科学版,2011,34(1):1-9.
[5]  刘敏. 广义平衡问题与无限族k-严格伪压缩映象的强收敛定理\[J\]. 四川师范大学学报:自然科学版,2011,34(1):63-70.
[6]  Ceng L C, Yao J C. A hybrid iterative scheme for mixed equilibrium problems and fixed point problems\[J\]. J Comput Appl Math,2008,214:186-201.
[7]  Hanson M A. On sufficiency of the Kuhn-Tucker condtions\[J\]. J Math Appl,1981,80:545-550.
[8]  Ansari Q H, Yao J C. Iterative schems for solving mixed variational-like inequalities\[J\]. J Optim Theo Appl,2001,3:527-541.
[9]  Chang S S, Chi K C. A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization\[J\]. Nonl Anal,2008,27:356-378.
[10]  Chadli O, Schaible S, Yao J C. Regularized equilibriums problems with an application to noncoercive hemivariational inequalities\[J\]. J Optim Theo Appl,2004,121:571-596.
[11]  Chadli O,Wong N C,Yao J C. Equilibriums problems with applications to eigenvalue problems\[J\]. J Optim Theo Appl,2003,117(2):245-266.
[12]  Konnov I V, Schaible S, Yao J C. Combined relaxation method for mixed equilibrium problems\[J\]. J Optim Theo Appl,2005,126:309-322.
[13]  Zeng L C, Wu S Y, Yao J C. Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems\[J\]. Taiwan J Math,2006,10:1497-1514.
[14]  Chadli O, Konnov I V, Yao J C. Descent methods for equilibriums problems in a Banach space\[J\]. Comput Math Appl,2004,48:609-616.
[15]  Combettes P L, Hirstoaga S A. Equilibrium programming in Hilbert spaces\[J\]. J Nonl Convex Anal,2005,6:117-136.
[16]  Kothe G. Topological Vector Spaces I\[M\]. Berlin:Springer-Verlag,1983:1-243.
[17]  Suzuki T. Strong convergence of krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals\[J\]. J Math Anal Appl,2005,305:227-229.
[18]  Xu H K. Iterative algorithms for nonlinear operators\[J\]. J Lond Math Soc,2002,66:240-256.
[19]  Shimoji K, Takahashi W. Stong convergence to comm fixed points of infinite nonexpansive mappings and applications\[J\]. Taiwan J Math,2001,5(2):387-404.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133