Schweizer B, Sklar A. Probabilistic Metric Spaces[M]. Amsterdam:Elsevier,1983.
[2]
De Baets B, Mesiar R. Triangular norms on product lattices[J]. Fuzzy Sets and Systems,1999,104:61-75.
[3]
Xiong Q Q, Wang X P. Solution sets of inf-αT fuzzy relational equations on complete Brouwerian lattices[J]. Information Sciences,2007,177:4757-4767.
[4]
De Baets B. Analytical Solution Methods for Fuzzy Relational Equations[C]//Dubois D, Prade H. The Handbooks of Fuzzy Sets Series. Dordrecht:Kluwer Academic Publishers,2000,1:291-340.
Birkhoff G. Lattice Theory[M]. 3th Ed. AMS:Colloquium Publications,1979.
[10]
Deschrijver G. A representation of t-norms in interval-valued L-fuzzy set theory[J]. Fuzzy Sets and Systems,2008,159:1597-1618.
[11]
Deschrijver G, Kerre E E. On the relationship between some extensions of fuzzy set theory[J]. Fuzzy Sets and Systems,2003,133:227-235.
[12]
Liu H W, Xue P J. T-seminorms and implications on a complete lattice[C]//Cao B Y, et al. Quantitative Logic and Soft Computing. Berlin, Heidelberg:Springer,2010,82:215-225.
[13]
Li P K, Fang S C. A survey on fuzzy relational equations, Part I: Classification and solvability[J]. Fuzzy Optimization and Decision Making,2009,8:179-229.
[14]
Wang X P, Xiong Q Q. The solution set of a fuzzy relational equation with sup-conjunctor composition in a complete lattice[J]. Fuzzy Sets and Systems,2005,153:249-260.
[15]
Bedregal B C, Takahashi A. The best interval representation of t-norms and automorphisms[J]. Fuzzy Sets and Systems,2006,157:3220-3230.