全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一阶脉冲微分方程的周期解(英)

, PP. 34-38

Keywords: 周期解,存在性,脉冲

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用文献(Appl.Math.Comput.,2002,132(2/3)489-503.)的迭代分析法,在Banach空间PC(J)上讨论了一阶脉冲微分方程的周期解的存在唯一性问题.首先将方程的解转化成积分形式,再构造相应的迭代序列,利用迭代分析法得到了一阶脉冲微分方程周期解的存在唯一性和其解在Banach空间PC(J)上的范数估计.

References

[1]  Chu J F, Nieto J J. Impulsive periodic solutions of first-order singular differential equations\[J\]. Bull London Math Soc,2008,40:143-150.
[2]  Li J, Nieto J J, Shen J. Impulsive periodic boundary value problems of first-order differential equations\[J\]. J Math Anal,2007,325:226-236.
[3]  Li Y K, Lu L H. Global exponential stability and existence of periodic solution of Hopfiled-type neural networks with impulses\[J\]. Phys Lett,2004,A333:62-71.
[4]  Nieto J J. Periodic boundary value problems for first-order impulsive ordinary differential equations\[J\]. Nonlinear Anal,2002,51:1223-1232.
[5]  Qian D B, Li X Y. Periodic solutions for ordinary differential equations with sublinear impulsive effects\[J\]. J Math Anal Appl,2005,303:288-303.
[6]  Zhang K X, Liu X Z. Nonlinear boundary value problem of first-order impulsive functional differential equations\[J\]. J Inequalities and Applications,2010,12(3):1-14.
[7]  Liu Y. Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations\[J\]. J Math Anal Appl,2007,327:435-452.
[8]  Liang R X, Shen J H. Periodic boundary value problem for the first order impulsive functional differential equations\[J\]. J Comput Appl Math,2007,202:498-510.
[9]  Nieto J J, Rodriguez-Lopez R. Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations\[J\]. J Math Anal Appl,2006,318:593-610.
[10]  Wang X J, Bai C Z. Impulsive boundary-value problems for first-order integro- differential equations\[J\]. Electronic J Differential Equations,2010,166:1-10.
[11]  Zhao A M, Bai Z G. Existence of solutions to first-order impulsive periodic boundary value problems\[J\]. Nonlinear Analysis: TMA,2009,17:1970-1977.
[12]  He M X. Global existence and stability of solutions for reaction diffusion functional differential equations\[J\]. J Math Anal Appl,1996,199(3):842-858.
[13]  He M X, Liu A P. Stability for large systems of partial functional differential equations: iterative analysis method\[J\]. Appl Math Comput,2002,132(2/3):489-503.
[14]  何莲花,刘婷,刘安平. 一阶微分方程的周期解\[J\]. 徐州师范大学学报:自然科学版2008,26(2):90-93.
[15]  Li Y L, Liu A P, Ma Q X, et al. Existence and stability for periodic boundary value problem of first order differential equations\[J\]. Dynamics of Continuous Discrete and Impulsive Sysyems: Mathematical Analysis,2007,A14:573-576.
[16]  刘婷,何莲花,李燕玲,等. 一阶微分方程反周期边界值问题的稳定性与存在性\[J\]. 生物数学学报,2007,22(5):811-816.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133