OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
DOI: 10.6054/j.jscnun.2015.00.000
Abstract:
运用Avery-Peterson不动点定理, 研究了三阶三点边值问题 $$\left\{\begin{aligned} &u'''(t)+ \lambda q(t)f(t,u)=0,\quad t\in (0,1),\\ &u(0)=\alpha u'(0), u(1)=\beta u(\eta),u'(1)=0 \end{aligned} \right. \eqno $$ 3个正解存在的充分条件,其中$f[0,1]\times[0,+\infty )\rightarrow[0,+\infty)$~连续,~$\lambda>0$~为参数,~$0<\eta<1,\alpha,\beta\in R$~且~$\alpha,\beta>0$.
References
[1] | Du.Z.J, Ge.W.G, Lin.X.J, Existence of solutions for a class of third-order nonlinear boundary value
|
[2] | (2005)1034-1040.
|
[3] | SIAM Review.1976.18:620-709.
|
[4] | Leggett.R.W, Williams.L.R., Multiple positive xed points of nonlinear operators on ordered Banach
|
[5] | .
|
[6] | Guo.D, Lakshmikantham.V, Nonlinear Problems in Abstract Cones[M]. New York: Academic Press
|
[7] | 1988.
|
[8] | Graef.J.R, Yang.B, Positive solutions of a nonlinear third order eigenvalue problem. Dyn. Syst. Appl.
|
[9] | (2006)97-110.
|
[10] | Feng.Y.Q, Liu.S.Y, Solvability of a third-order two-point boundary value problem. Appl. Math. Lett.
|
[11] | spaces[J].Indiana Univ. Math. J. 1979, 28:673-688.
|
[12] | .
|
[13] | problem.Math. Appl. 219(2013)9783-9790.
|
[14] | 87-04.
|
[15] | problems[J].Math. Anal. Appl. 294(2004)104-122.
|
[16] | Amam.H, Fixed-point equations and nonlinear eigenvalue problems in ordered Banach spaces[J].
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|