1 Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.
[2]
2 Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells[J]. Cancer Res, 2006, 66(19): 9339-9344.
[3]
3 Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648.
[4]
4 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737.
[5]
5 Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988.
[6]
6 Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma[J]. Mol Cancer, 2006, 5: 67.
[7]
7 Vaiopoulos AG, Kostakis ID, Koutsilieris M, et al. Colorectal cancer stem cells[J]. Stem Cells, 2012, 30(3): 363-371.
[8]
14 Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties[J]. Hepatology, 2006, 44(1): 240-251.
[9]
15 Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness[J]. Proc Natl Acad Sci USA, 2006, 103(30): 11154-11159.
[10]
16 Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system[J]. Stem Cells, 2006, 24(3): 506-513.
[11]
17 Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma[J]. Proc Natl Acad Sci USA, 2007, 104(3): 973-978.
[12]
18 Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell, 2007, 1(5): 555-567.
[13]
19 Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133 (-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles[J]. Cancer Res, 2007, 67(9): 4010-4015.
[14]
20 Liu SY, Zheng PS. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer[J]. Oncotarget, 2013, 4(12): 2462-2475.
[15]
21 Pang R, Law WL, Chu AC, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer[J]. Cell Stem Cell, 2010, 6(6): 603-615.
[16]
22 Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007, 67(3): 1030-1037.
[17]
23 Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res, 2005, 65(23): 10946-10951.
[18]
24 Richardson GD, Robson CN, Lang SH, et al. CD133, a novel marker for human prostatic epithelial stem cells[J]. J Cell Sci, 2004, 117 (Pt 16): 3539-3545.
[19]
25 Dean M, Fojo T, Bates S. Tumor stem cells and drug resistance[J]. Nat Rev Cancer, 2005, 5(4): 275-284.
[20]
26 Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer[J]. Oncogene, 2010, 29(34): 4741-4751.
[21]
27 Hu X, Ghisolfi L, Keates AC, et al. Induction of cancer cell stemness by chemotherapy[J]. Cell Cycle, 2012, 11(14): 2691-2698.
30 Bhaskara VK, Mohanam I, Rao JS, et al. Intermittent hypoxia regulates stem-like characteristics and differentiation of neuroblastoma cells[J]. PLoS One, 2012, 7(2): e309D5.
[25]
8 Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, 2007, 1(3): 313-323.
[26]
9 Casagrande F, Cocco E, Bellone S, et al. Eradication of chemotherapy-resistant CD44+ human ovarian cancer stem cells in mice by intraperitoneal administration of Clostridium perfringens enterotoxin[J]. Cancer, 2011, 117(24): 5519-5528.
[27]
10 Garcia-Gomez I, Elvira G, Zapata AG, et al. Mesenchymal stem cells: biological properties and clinical applications[J]. Expert Opin Biol Ther, 2010, 10(10): 1453-1468.
[28]
11 Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science, 1992, 255(552): 1707-1710.
[29]
12 Lansdorp PM, Dragowska W. Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow[J]. J Exp Med, 1992, 175(6): 1501-1509.
[30]
13 Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells[J]. Proc Natl Acad Sci USA, 2004, 101(39): 14228-14233.
32 Santisteban M, Reiman JM, Asiedu MK, et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells[J]. Cancer Res, 2009, 69(7): 2887-2895.
[33]
33 Ye J, Wu D, Shen J, et al. Enrichment of colorectal cancer stem cells through epithelial-mesenchymal transition via CDH1 knockdown[J]. Mol Med Rep, 2012, 6(3): 507-512.
[34]
34 Li J, Zhou BP. Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters[J]. BMC Cancer, 2011, 11: 49.
[35]
35 Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells[J]. Nat Med, 2006, 12(10): 1167-1174.
[36]
36 Gadhoum Z, Delaunay J, Maquarre E, et al. The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells[J]. Leuk Lymphoma, 2004, 45(8): 1501-1510.
[37]
37 Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis[J]. Nature, 2004, 432(715): 324-331.
[38]
38 Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML[J]. N Engl J Med, 2004, 351(7): 657-667.
[39]
39 Mamaeva V, Rosenholm JM, Bate-Eya LT, et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer[J]. Mol Ther, 2011, 19(8): 1538-1546.
[40]
40 Clement V, Sanchez P, De Tribolet N, et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity[J]. Curr Biol, 2007, 17(2): 165-172.
[41]
41 Zhou Y, Yang J, Kopeek J. Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells[J]. Biomaterials, 2012, 33(6): 1863-1872.