Savige J, Gregory M, Gross O, et al. Expert guidelines for the manage-ment of Alport syndrome and thin basement membrane nephropathy[J]. J Am Soc Nephrol, 2013, 24(3): 364-375.
[2]
Haas M. Alport syndrome and thin glomerular basement membrane ne-phropathy: a practical approach to diagnosis [J]. Arch Pathol Lab Med,2009, 133(2): 224-232.
[3]
Temme J, Kramer A, Jager KJ, et al. Outcomes of male patients with Al-port syndrome undergoing renal replacement therapy [J]. Clin J AmSoc Nephrol, 2012, 7(12): 1969-1976.
[4]
Gumber MR, Kute VB, Goplani KR, et al. Outcome of renal transplanta-tion in Alport's syndrome: a single-center experience [J]. TransplantProc, 2012, 44(1): 261-263.
Sokolov MV, Neumann RD. Changes in human pluripotent stem cell gene expression after genotoxic stress exposures [J]. World J StemCells, 2014, 6(5): 598-605.
[7]
Li J, Song W, Pan G, et al. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells [J].J Hematol Oncol, 2014, 7(1): 50.
[8]
Bhargava M, Becker TL, Viken KJ, et al. Proteomic profiles in acute re-spiratory distress syndrome differentiates survivors from non-survivors[J]. PLoS One, 2014, 9(10): e109713.
[9]
Sui W, Cui Z, Zhang R, et al. Comparative proteomic analysis of renal tissue in IgA nephropathy with iTRAQ quantitative proteomics [J].Biomed Rep, 2014, 2(6): 793-798.
[10]
Zhou T, Benda C, Dunzinger S, et al. Generation of human induced pluripotent stem cells from urine samples [J]. Nat Protoc, 2012, 7(12): 2080-2089.
[11]
Chen Y, Luo R, Xu Y, et al. Generation of systemic lupus erythemato-sus-specific induced pluripotent stem cells from urine [J]. Rheumatol Int, 2013, 33(8): 2127-2134.
[12]
Munoz-Gomez A, Corredor M, Benitez-Paez A, et al. Development of quantitative proteomics using iTRAQ based on the immunological re-sponse of galleria mellonella larvae challenged with fusarium oxyspo-rum microconidia [J]. PLoS One, 2014, 9(11): e112179.
[13]
Dong Y, Cai J, Chen S. Proteomics of drug-resistant cancer biomark- ers [J]. Bioanalysis, 2014, 6(19): 2519-2521.
[14]
Peiris-Pages M. Role of VEGF 165b in pathophysiology [J]. Cell Adh Migr, 2012, 6(6): 561-568.
[15]
Eremina V, Sood M, Haigh J, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases [J]. J Clin Invest, 2003, 111(5): 707-716.
[16]
Perrin RM, Konopatskaya O, Qiu Y, et al. Diabetic retinopathy is asso-ciated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor [J]. Diabetologia, 2005, 48(11):2422-2427.
[17]
Mueller JW, Shafqat N. Adenosine-5'-phosphosulfate-a multifaceted modulator of bifunctional 3'-phospho-adenosine-5'-phosphosulfate synthases and related enzymes [J]. FEBS J, 2013, 280(13):3050-
[18]
3057.
[19]
Noordam C, Dhir V, McNelis JC, et al. Inactivating PAPSS2 mutations in a patient with premature pubarche [J]. N Engl J Med, 2009, 360 (22): 2310-2318.
[20]
Xiao L, Naganawa T, Lorenzo J, et al. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modula- tion of FGF23 and KLOTHO [J]. J Biol Chem, 2010, 285(4): 2834-2846.
[21]
Stubbs JR, He N, Idiculla A, et al. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease [J]. J Bone Miner Res, 2012, 27(1): 38-46.
[22]
Olpin SE, Allen J, Bonham JR, et al. Features of carnitine palmitoyl-transferase type I deficiency [J]. J Inherit Metab Dis,2001,24(1):35- 42.
[23]
Nyman LR, Cox KB, Hoppel CL, et al. Homozygous carnitine palmito-yltransferase 1a (liver isoform) deficiency is lethal in the mouse [J].Mol Genet Metab, 2005, 86(1-2): 179-187.
[24]
Ma J, Pan X, Wang Z, et al. Twenty-one novel mutations identified in the COL4A5 gene in Chinese patients with X-linked Alport's syn-drome confirmed by skin biopsy [J]. Nephrol Dial Transplant, 2011, 26(12): 4003-4010.