全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2012年发表的前10名高被引频次论文

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据自由基聚合反应原理,通过聚合物分子结构设计和优选合成工艺方法,合成一系列主链聚合度不变、侧链密度不同的梳状结构聚羧酸系减水剂(PCA)。采用凝胶色谱仪测定PCA分子量分布及未反应单体含量。结果发现,对于聚合度为50的聚醚大单体,反应单体的酸醚比在2.51以下时,聚合反应转化率较低。为准确反映PCA结构对性能的影响,采用常规添加法、有效聚合物等质量添加法及等摩尔添加法测定不同结构PCA对水泥初始流动度及保持能力的影响,结果表明随着侧链密度的减小,水泥初始净浆流动度增加;当侧链密度低于25%后,继续减小侧链密度,初始流动度增加不明显;水泥净浆流动性保持能力随侧链密度的减小而显著下降。

References

[1]  ? 王子明. 聚羧酸系高性能减水剂制备?性能与应用[M]. 北京: 中国建筑工业出版社, 2009: 153–154.
[2]  WANG Ziming. Synthesis, Performance and Application of Polycarboxylate Superplasticizer (in Chinese). Beijing: China Building Industry Press, 2009: 153–154.
[3]  ? 雷西萍, 李辉. 聚羧酸减水剂侧链密度对水泥水化行为的影响[J]. 硅酸盐通报, 2009, 28(6): 1254–1258.
[4]  LEI Xiping, LI Hui. Bull Chin Ceram Soc (in Chinese), 2009, 28(6): 1254–1258.
[5]  ? 马保国, 张慢, 谭洪波, 等. 聚羧酸减水剂侧链密度对水泥早期水化特性的影响[J]. 新型建筑材料, 2008, 6: 41–43.
[6]  MA Baoguo, ZHANG Man, TAN Hongbo, et al. New Construct Mater (in Chinese), 2008, 6: 41–43.
[7]  ? 蔡苇, 崔鸿越, 郭桂珍, 等. 侧链结构对聚羧酸盐减水剂性能的影响[J]. 硅酸盐通报, 2011, 30(4): 800–804.
[8]  CUI Wei, CUI Hongyue, GUO Guizhen, et al. Bull Chin Ceram Soc (in Chinese), 2011, 30(4): 800–804.
[9]  ? 刘承果, 谢鸿峰, 郑云, 等. 示差折光和光散射双检测器体积排除色谱的绝对定量化[J]. 高分子学报, 2008, 11: 1031–1036
[10]  LIU Chengguo, XIE Hongfeng, ZHENG Yun, et al. Acta Polymer Sin (in Chinese), 2008, 11: 1031–1036
[11]  ? 王子明, 王亚丽. 混凝土高效减水剂[M]. 北京: 化学工业出版社, 2011: 330.
[12]  WANG Zingming, WANG Yali. High rang water reducer for concrete (in Chinese). Beijing: Chemical Industry Press, 2011: 330.
[13]  ? SYLVIE P, SOLENNE L, DAVID R, et al. Effect of the repartition of the PEG side chains on the adsorption and dispersion behaviors of PCP in presence of sulfate [J]. Cem Concr Res, 2012, 42: 431–439.
[14]  ? YOSHIKA K, TAZAWA E, KAWAI K, et al. Adsorption characteristics of superplasticizers on cement component minerals [J]. Cem Concr Res, 2002, 32: 1507–1513.
[15]  ? ZINGG A, WINNEFELD F, PAKUSCH L, et al. Adsorption of polyelectrolytes and its in?uence on the rheology, zeta potential, and microstructure of various cement and hydrate phases [J]. J Colloid Inter Sci, 2008, 323: 301–312.
[16]  ? YAMADA K, OGAMA S, HANEHARA S. Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase [J]. Cem Concr Res, 2001, 31: 375–383.
[17]  ? PLANK J, CHRISTIAN H. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption [J]. Cem Concr Res, 2007, 37: 537–542.
[18]  ? WINNEFELD F, BECKER S, PAKUSH J, et al. Effects of molecular architecture of comb-shaped superplasticizer on their performance in cementitious systems [J]. Cem Concr Res, 2007, 29: 251–262.
[19]  ? 刘勇. 聚丙烯酸高效减水剂构效关系及吸附–分散作用[D]. 武汉: 武汉理工大学, 2008.
[20]  ? 李亮, 马保国, 谭洪波, 等. 聚羧酸减水剂侧链结构对水泥水化影响规律研究[J]. 新型建筑材料, 2009(2): 6–8.
[21]  LI Liang, MA Baoguo, TAN Hongbo, et al. New Construct Mater (in Chinese), 2009(2): 6–8.
[22]  ? RAN Qianping, PoNISSERIL S, MIAO Changwen, et al. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions [J]. J Colloid Interface Sci, 2009(336): 624–633.
[23]  LIU Yong. Structure-activity Relationship and Adsorption–dispersion Mechanism of Polyacrylate Superplasticizer [D]. Wu Han University of Technology, 2008.
[24]  ? TOYOHARU Nawa. Effect of chemical structure on steric stabilization of polycarboxylate-based superplasticizer [J]. J Adv Concr Technol, 2006, 4(2): 225–232.?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133