全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ho3+/Yb3+共掺TeO2--ZnO--ZnX2 (X=F, Cl, Br)玻璃的结构和红外发光特性(英文)

DOI: 10.7521/j.issn.0454-5648.2014.04.20

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用熔融法制备TeO2-ZnO-ZnX2(X=F,Cl,Br)系统氧卤玻璃块体,并测定了玻璃的各项特征温度。通过Raman光谱和X射线光电子能谱分析了卤化物的引入对玻璃网络结构稳定性的影响。结果表明,加入ZnF2比加入ZnCl2或ZnBr2对Ho3+/Yb3+共掺的碲酸盐玻璃的近红外荧光输出有更明显的效果和规律性。与加入ZnCl2和ZnBr2相比,加入ZnF2对Ho3+/Yb3+共掺的碲酸盐玻璃近中红外的荧光输出影响更加明显和规律。ZnF2虽会抑制1μm处发光但能增强1.2和2μm的发光,同时2μm处荧光输出的量子效率也得到大幅提升。比起使用ZnBr2,使用ZnF2和ZnCl2替代ZnO能更好地提高玻璃的光学性能和热稳定性。在这3种卤化锌中,氟化锌对稀土发光的增强起着更为重要的作用。

References

[1]  RICHARDS B, JHAA, TSANG Y, et al. Tellurite glass lasers operating close to 2μm [J]. Laser Phys Lett. 2010,7: 177-193.
[2]  CHEN Q J, ZHANG W J, HUANG X Y, et al. Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics [J]. J Alloy Compd, 2012, 513: 139-144.
[3]  HOU Z, XUE Z, LI F, et al. Luminescence and up-conversion mechanism of Er3+/Ho3+ co-doped oxyfluoride tellurite glasses and glass-ceramics [J]. J Alloy Compd, 2013, 577: 523-527.
[4]  CHEN D, WANG Y, BAO F, et al. Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics[J]. J Appl Phys, 2007, 101: 113511.
[5]  JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys Rev, 1962, 127: 750.
[6]  OFELT G S. Intensities of crystal spectra of rare-earth ions [J]. J Chem Phys, 1962, 37: 511.
[7]  RAJU C N, REDDY C A, SAILAJA S, et al. Judd-Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO-Bi2O3-B2O3 glasses for laser applications [J]. J Mater Sci, 2012, 47: 772-778.
[8]  PENG B, IZUMITANIT. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ [J]. Opt Mater, 1995, 4: 797-810.
[9]  JACINTO C, OLIVEIRA SL, NUNES L, et al. Thermal lens study of the OH influence on the fluorescence efficiency of Yb-doped phosphate glasses [J]. Appl Phys Lett, 2005, 86: 71911.
[10]  O DONNELL M D, MILLER C A, FURNISS D, et al. Fluorotellurite glasses with improved mid-infrared transmission [J]. J Non-Cryst Solids, 2003, 331: 48-57.
[11]  JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nat Photonics. 2012, 6: 423-431.
[12]  RAH El-Mallawany. Tellurite glasses handbook: physical properties and data. Boca Raton, Florida: CRC press, 2001.
[13]  DUMBAUGH WH. Infrared Transmitting Glasses[J]. Opt Eng, 1985, 24: 242257.
[14]  SIDEBOTTOM D L, HRUSCHKA M A, POTTER B G, et al. Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses [J]. J Non-Cryst Solids. 1997, 222: 282-289.
[15]  SIDEBOTTOM D L, HRUSCHKA M A, POTTER B G, et al. Increased radiative lifetime of rare earth-doped zinc oxyhalide tellurite glasses [J] Appl Phys Lett, 1997, 71: 1963-1965.
[16]  ZHANG Q Y, FENG Z M, YANG Z M, et al. Energy transfer and infrared-to-visible upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses [J]. J Quant Spectrosc Ra. 2006, 98: 167-179.
[17]  B-RGER H, KNEIPP K, HOBERT H, et al. Glass formation, properties and structure of glasses in the TeO2-ZnO system [J]. J Non-Cryst Solids, 1992, 151: 134-142.
[18]  XU X, ZHOU Y, ZHENG S, et al. Luminescence properties and energy transfer mechanism of Er3+/Tm3+ co-doped tellurite glasses [J]. J Alloy Compd, 2013,556: 221-227.
[19]  EL-MALLAWANY R, AHMED I A. Thermal properties of multicomponent tellurite glass [J]. J Mater Sci, 2008, 43: 5131-5138.
[20]  HAGER I Z, EL-MALLAWANY R. Preparation and structural studies in the (70-x)TeO2-20WO3-10Li2O-xLn2O3 glasses[J] J Mater Sci. 2010, 45: 897-905.
[21]  FORTES Lism, SANTOS Lisf, Clara Gon C C, et al. Preparation and characterization of Er3+-doped TeO2-based oxyhalide glasses [J]. J Non-Cryst Solids, 2003, 324: 150-158.
[22]  NAZABAL V, TODOROKI S, NUKUI A, et al. Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties [J]. J Non-Cryst Solids. 2003, 325: 85-102.
[23]  GEBAVI H, TACCHEO S, BALDA R, et al. The effect of ZnF2 on the near-infrared luminescence from thulium doped tellurite glasses [J]. J Non-Cryst Solids, 2012, 358: 1497-1500.
[24]  CHARTON P, THOMAS P, ARMAND P. Raman and crystallization behaviors of TeO2-Sb2O4 glasses [J]. J Non-Cryst Solids. 2003, 321: 81-88.
[25]  SAHAR M R, JEHBU A K, KARIM M M. TeO2-ZnO-ZnCl2 glasses for IR transmission [J]. J Non-Cryst Solids. 1997, 213: 164-167.
[26]  WANG M, YU C, HE D, et al. Enhanced 2.0μm emission of Yb-Ho doped fluorophosphates glass [J]. J Non-Cryst Solids. 2011, 357: 2447-2449.
[27]  DREXHAGE M G, EL-BAYOUMI O H, MOYNIHANCT, et al. Preparation and Properties of Heavy-Metal Fluoride Glasses Containing Ytterbium or Lutetium [J]. J Am Ceram Soc, 1982, 65: c168-c171.
[28]  HRUB Y A. Evaluation of glass-forming tendency by means of DTA [J]. Czechoslovak J Phys B, 1972, 22: 1187-1193.
[29]  SEKIYA T, MOCHIDA N, OHTSUKA A, et al. Raman spectra of MO1/2-TeO2 (M=Li, Na, K, Rb, Cs and Tl) glasses [J]. J Non-Cryst Solids, 1992, 144: 128-144.
[30]  B-RGER H, VOGEL W, KOZHUKHAROV V. IR transmission and properties of glasses in the TeO2-RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3 systems [J]. Infrared Phys, 1985, 25: 395-409.
[31]  EFIMOV A M. Multi-site effect in the IR spectra of various inorganic glasses: experimental evidence and structural reasons [J]. J Non-Cryst Solids, 1998, 232: 99-106.
[32]  EBENDORFF-HEIDEPRIEM H, KUAN K, OERMANN M R, et al. Extruded tellurite glass and fibers with low OH content for mid-infrared applications [J]. Opt Mater Exp, 2012, 2: 432-442.
[33]  FENG L, WANG J, TANG Q,et al. Optical properties of Ho3+-doped novel oxyfluoride glasses[J]. J Lumin, 2007, 124(2): 187-194.
[34]  THOMAS P A. The crystal structure and absolute optical chirality of paratellurite, αTeO2 [J]. J Phys C, 1988, 21: 4611.
[35]  SEKIYA T, MOCHIDA N, OHTSUKA A. Raman spectra of MO-TeO2 (M=Mg, Sr, Ba and Zn) glasses [J]. J Non-Cryst Solids, 1994, 168: 106-114.
[36]  MEKKI A, KHATTAK G D, WENGER L E. XPS and magnetic studies of vanadium tellurite glasses[J]. J Electron Spectrosc, 2009, 175: 21-26.
[37]  KHATTAK G D, SALIM M A. X-ray photoelectron spectroscopic studies of zinctellurite glasses [J]. J Electron Spectrosc, 2002, 123: 47-55.
[38]  ROY B, JAIN H, ROY S, et al. The development of nanosize silver particles in an ion exchanged silicate glass matrix[J]. J Non-Cryst Solids, 1997, 222: 102-112.
[39]  LIN J, HUANG W H, SUN Z R, et al. Structure and non-linear optical performance of TeO2-Nb2O5-ZnO glasses [J]. J Non-Cryst Solids, 2004, 336 (3): 189-194.
[40]  GAARENSTROOM S W, WINOGRAD N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides [J]. J Chem Phys, 1977, 67: 3500.
[41]  ZHANG L, FAN T, WANG P W. Effect of oxide dopant on the structure of fluorozirconate glasses studied by X-ray photoelectron spectroscopy [J]. J Mater Sci, 1995 30: 1445-1448.
[42]  MCCLOY J S, RILEY B J, LIPTON A S, et al. Structure and Chemistry in Halide Lead-Tellurite Glasses [J]. J Phys Chem C, 2013, 117: 3456-3466.
[43]  CHURBANOV M F, MOISEEV A N, SNOPATIN G E, et al. Production and properties of high purity glasses of TeO2-WO3, TeO2-ZnO systems [J]. Phys Chem Glasses-B, 2008, 49: 297-300.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133