全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新型热释电材料性能及其在红外探测器中的应用

DOI: 10.7521/j.issn.0454-5648.2014.04.01

Full-Text   Cite this paper   Add to My Lib

Abstract:

弛豫铁电单晶铌镁酸铅--钛酸铅(PMNT),Mn掺杂PMNT,三元系铌铟酸铅--铌镁酸铅--钛酸铅(PIMNT)和Mn掺杂PIMNT)不仅具有优异的压电性能,而且还具有非常优异的热释电性能。通过对弛豫铁电单晶的介电、热释电性能随固熔体组成、结晶学取向的研究,发现了[111]取向的PMN-0.26PT和掺锰PMN-0.26PT单晶的本征热释电系数分别达到15.3×10-4C/m2K和17.2×10-4C/m2K,具有优异的热释电综合性能。掺杂后,二元和三元体系弛豫铁电单晶的介电损耗降至0.0005,使得Mn掺杂PMN-0.26PT单晶的探测优值从15.3×10-5Pa-1/2提高至40.2×10-5Pa-1/2,Mn掺杂PIMNT的探测优值达到19.5×10-5Pa-1/2。高Curie温度(TC)PIMNT(41/17/42)和Mn掺杂PIMNT(23/47/30)单晶的TC分别达到253℃和179℃。采用红外吸收率更高的多壁碳纳米管作为吸收层,制备了基于Mn掺杂PMNT单晶的高性能热释电探测器,该探测器的电压响应率达到115kV/W(10Hz),探测率在4Hz和10Hz时分别达到3.0×109cm·Hz1/2/W和2.21×109cm·Hz1/2/W,性能比目前商用的高性能LiTaO3探测器要高出4倍之多,弛豫铁电单晶线阵红外探测器也显示出了明显的性能优势。

References

[1]  WHATMORE R W.Pyroelectric devices and materials [J]. Rep Prog Phys,1986,49: 1335-1386.
[2]  KRUSE P W. Uncooled thermal iomaging, arrays, systems, and applications [M]. SPIE Press, 2001: 51,49-55.
[3]  WATTON R.Ferroelectric IR bolometers- from ceramic hybrid arrays to direct thin film integration [J]. Ferroelectrics, 1996, 184: 141-150.
[4]  BUSER R G, TOMPSETT M F, KURSE P W, et al. Uncooled infrared imaging arrays and systems [M]. Academic Press, Columbus USA, 1997:47.
[5]  BRADY J, SCHIMERT T, RATCLIFF D.Advances in amorphous silicon uncooled IR systems [J].Proc SPIE 3698, Infrared Technol Appl XXV, 1999: 161.
[6]  罗豪甦, 沈关顺, 王评初, 乐秀宏, 殷之文. 新型压电材料-弛豫铁电单晶的研究 [J]. 无机材料学报, 1997, 12(5):768.
[7]  LUO H, XU G, XU H, et al. Compositional homogeneity and electrical properties of lead magnesium niobatetitanate single crystals grown by a modified Bridgman technique [J]. Jpn J Appl Phys, 2000, 39(9B): 5581-5585.
[8]  ZHAO X, FANG B, CAO H, et al. Dielectric and piezoelectric performance of PMN-PT single crystals with compositions around the MPB: influence of composition, poling field and crystal orientation [J]. Mater Sci Eng B, 2002, 96(3): 254-262.
[9]  WAN X, LUO H, WANG J, et al. Investigation on optical transmission spectra of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals [J]. Solid State Commun, 2004, 129(6): 401-405.
[10]  TANG Y, ZHAO X, FENG X, et al. Pyroelectric properties of [111]-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals [J]. Appl Phys Lett, 2005, 86(8): 082901.
[11]  LIU L, LI X, WU X, et al. Dielectric, ferroelectric, and pyroelectric characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3-0.26PbTiO3 crystals for infrared detection applications [J]. Appl Phys Lett, 2009, 95(19): 192903.
[12]  YU P, WANG F, ZHOU D, et al. Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary single crystal [J].? Appl Phys Lett, 2008, 92(25): 252907.
[13]  GUO Y, LUO H, HE T, et al. Peculiar properties of a high Curie temperature Pb(In1/2Nb1/2)O3-PbTiO3 single crystal grown by the modified Bridgman technique [J]. Solid State Commun, 2002, 123(9): 417-420.
[14]  TANG Y, LUO H, ZHAO X, et al. Composition, dc bias and temperature dependence of pyroelectric properties of [111]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals [J]. Mater Sci Eng B, 2006, 119: 71-74.
[15]  TANG Y, WAN X, ZHAO X, et al. Large pyroelectric response in relaxor-based ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals [J]. J Appl Phys, 2005, 98(8): 084104.
[16]  LIU L, WU X, ZHAO X, et al. Pyroelectric Performances of Rhombohedral 0.42Pb(In1/2Nb1/2)O3-0.3Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 Single Crystals [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57 (10): 2154-2158.
[17]  LIU L, WU X, WANG S, et al. Growth and pyroelectric properties of rhombohedral 021Pb(In1/2Nb1/2)O3-0.49Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ternary singlecrystals [J]. Crystal Growth, 2011, 318: 856-859.
[18]  ORITA M, SATOH H, AIZAWA K, et al. Preparation of Ferroelectric RelaxorPb(Zn1/2Nb2/3)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 by Two-Step Calcination Method [J]. Jpn J Appl Phys, 1992, 31: 3261-3264.
[19]  DAVIS M, DAMJANOVIC D, SETTER N.Pyroelectric properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 and (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals measured using a dynamic method [J]. J Appl Phys, 2004, 96(5): 2811.
[20]  SINGH A K, PANDEY D. Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 [J]. J Phys: Condens Matter, 2001, 13: 931-936.
[21]  LIU S T, ZOOK J D, LONG D.Relationships between pyroelectric and ferroelectrics parameters [J].Ferroelectrics, 1975, 9: 39-43.
[22]  ZOOK J D, LIU S T.Use of effective field theory to predict relationships among ferroelectric parameters [J]. Ferroelectrics, 1976, 11 [1]: 371-376.
[23]  Devonshire A F. Theory of ferroelectrics [J]. Adv Phys, 1954, 43: 85-130.
[24]  LINES M E, GLASS A M.Principles and Applications of Ferroelectrics and Related Materials [M]. New York: Oxford University Press, 2001.
[25]  TANG Y.Novel pyroelectric materials and their applications in infrared devices.[D].Shanghai:Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2007.
[26]  PIKE G E, WARREN W L, DIMOS D, et al. Voltage offsets in (Pb,La)(Zr,Ti)O3? thin films [J]. Appl Phys Lett, 1995, 66: 484.
[27]  KULWICI B M, AMIN A, BERATAN H R. Pyroelectric imaging\[C\]//Proc 8th Int Symp on Applications of Ferroelectrics (IEEE, New York), 1992.
[28]  TANG Y, LUO L, JIA Y, et al. Mn-doped 0.71Pb,Mg1/3Nb2/3…O3-0.29PbTiO3 pyroelectric crystals for uncooled infrared focal plane arrays applications [J].Appl Phys Lett, 2006, 89: 162906.
[29]  SHAO X, MA X, YU Y, et al. The study of carbon nanotubes as coating films for electrically calibrated detectors [J].Meas Sci Technol, 2012, 23:025106.
[30]  NEUMANN N, ES-SOUNI M, Luo H. Application of PMN-PT in pyroelectric detectors[C]//18th IEEE International Symposium on the Applications of Ferroelectrics, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133