? LEE C K, WEST A R. Liquid-like lithium ion conductivity in Li4–3xAlxGeO4 solid electrolyte [J]. J Mater Chem, 1991, 1: 149–150.
[2]
? LIU Z Q, HUANG F Q, YANG J H, et al. New lithium ion conductor, thio-LISICON lithium zirconium sulfide system [J]. Solid State Ionics, 2008, 179(27–32): 1714–1716.
[3]
? THANGADURAI V, WEPPNER W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12 [J]. J Solid State Chem, 2006, 179(4): 974–984.
[4]
? MURAYAMA M, KANNO R, KAWAMOTO Y, et al. Structure of the thio-LISICON, Li4GeS4 [J]. Solid State Ionics, 2002, 154–155: 789–794.
[5]
? KANNO R, HATA T, KAWAMOTO Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON lithium germanium sulfide system [J]. Solid State Ionics, 2000, 130: 97–104.
[6]
? AHN B T, HUGGINS R A. Synthesis and lithium conductivities of Li2SiS3 and Li4SiS4 [J]. Mater Res Bull, 1989, 24(7): 889–897.
[7]
? MURAYAMA M. Synthesis of new lithium ionic conductor?? thio- LISICON—lithium silicon sulfides system [J]. J Solid State Chem, 2002, 168(1): 140–148.
[8]
? TACHEZ M, MALUGANI J P, MERCIER R, et al. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 [J]. Solid State Ionics, 1984, 14(3): 181–185.
[9]
? MURAYAMA M, SONOYAMA N, YAMADA A, et al. Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system [J]. Solid State Ionics, 2004, 170(3–4): 173–180.
[10]
? WANG D W, YANG Y. Synthesis and Characterization of B-Doped LISICON Solid Electrolytes [C]// 16th International Meeting on Lithium Batteries, Jeju, Korea, 2012: 652.
[11]
? AONO H, SUGIMOTO E, SADAOKA Y, et al. Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) [J]. Solid State Ionics, 1991, 47(3–4): 257–264.
[12]
? TAKANO R, TADANAGA K, HAYASHI A, et al. Low Temperature Synthesis of Li7La3Zr2O12 Solid Electrolyte by the Sol-Gel Method [C]// 16th International Meeting on Lithium Batteries, Jeju, Korea, 2012: 216.
[13]
? LI Y T, HAN J T, WANG C A, et al. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 [J]. J Power Sources, 2012, 209: 278–281.
[14]
? SCHROEDER M, GLATTHAAR S, BINDER J R. Influence of spray granulation on the properties of wet chemically synthesized Li1.3Ti1.7? Al0.3(PO4)3 (LATP) powders [J]. Solid State Ionics, 2011, 201(1): 49–53.
[15]
? WEN Z Y, XU X X, LI J X. Preparation, microstructure and electrical properties of Li1.4Al0.4Ti1.6(PO4)3 nanoceramics [J]. J Electroceram, 2008, 22(1–3): 342–345.
[16]
? HUANG L Z, WEN Z Y, WU M F, et al. Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method [J]. J Power Sources, 2011, 196(16): 6943–6946.
FENG Shouhua, PANG Guangsheng , XU Ruren. Synthesis of fast ionic conductor by microwave method [J]. Chem J Chinese U (in Chinese), 1996, 10(17): 1495–1499.
[19]
? TARASCON J M, ARMAND M. Issues and challenges facingre chargeable lithium batteries [J]. Nature, 2001, 414(6861): 359–367.
[20]
? GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chem Mater, 2010, 22(3): 587–603.
FAN H H, ZHOU D, FAN L Z, et al. Development on in-situ synthesis of gel polymer electrolyte for lithium batteries [J]. J Chin Ceram Soc, 2013, 41(2): 134–139.
[23]
? THANGADURAI V, WEPPNER W. Recent progress in solid oxide and lithium ion conducting electrolytes research [J]. Ionics, 2006, 12(1): 81–92.
[24]
? KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S–GeS2–P2S5 system [J]. J Electrochem Soc, 2001, 148(7): A742–A746.
[25]
? ARBI K, MANDAL S, ROJO J M, et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2–xAlx? (PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study [J]. Chem Mater, 2002, 14(3): 1091–1097.
[26]
? THANGADURAI V, WEPPNER W. Li6ALa2Ta2O12 (A = Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction [J]. Adv Funct Mater, 2005, 15(1): 107–112.
[27]
? STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review [J]. Chem Mater, 2003, 15: 3974–3990.
[28]
? KNAUTH P. Inorganic solid Li ion conductors: An overview [J]. Solid State Ionics, 2009, 180(14–16): 911–916.
[29]
? BOULANT A, BARDEAU J F, JOUANNEAUX A, et al. Reaction mechanisms of Li0.30La0.57TiO3 powder with ambient air: H+/Li+ exchange with water and Li2CO3 formation [J]. Dalton Trans, 2010, 39(16): 3968–3975.
[30]
? CRETIN M, FABRY P. Comparative study of lithium ion conductors in the system Li1+xAlxA2?xIV (PO4)3 with AIV=Ti or Ge and 0≤x≤0·7 for use as Li+ sensitive membranes [J]. J European Ceram Soc, 1999, 19(16): 2931–2940.
[31]
? ARBI K, ROJO J M, SANZ J. Lithium mobility in titanium based Nasicon Li1+xTi2?xAlx(PO4)3 and LiTi2?xZrx(PO4)3 materials followed by NMR and impedance spectroscopy [J]. J European Ceram Soc, 2007, 27(13–15): 4215–4218.
[32]
? ROBERTSONA A D, WESTA A R, RITCHIE A G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications [J]. Solid State Ionics, 1997(1–2): 1–11.
ZHENG Z S, ZHANG Z T, TANG Z L, et al. Lithium inorganic solid electrolytes [J]. Prog Chem (in Chinese), 2003, 15(2): 101–106.
[35]
? KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor [J]. Nat Mater, 2011, 10(9): 682–686.
[36]
? THANGADURAI V, WEPPNER W. Li6ALa2Nb2O12 (A = Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure [J]. J Am Ceram Soc, 2005, 88(2): 411–418.
[37]
? BAN C W, CHOI G M. The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates [J]. Solid State Ionics, 2001, 140(3–4): 285–292.
[38]
? BOHNKE O. The fast lithium-ion conducting oxides Li3xLa2/3?xTiO3 from fundamentals to application [J]. Solid State Ionics, 2008, 179(1–6): 9–15.
[39]
? ZHANG Y R, CHEN Y. Al,F-doped new perovskite lithium fast ion conductor Li3xLa2/3?x□1/3?2xTi1?yAlyO3?yFy (x = 0.11)[J]. Ionics, 2006, 12(1): 63–67.
[40]
? HE L X, YOO H I. Effects of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3?x)1+y/2(MyTi1?y)O3 (M = Al, Cr)[J]. Electrochim Acta, 2003, 48(10): 1357–1366.
[41]
? BOHNKE O, BOHNKE C, SID’AHMED J O, et al. Lithium ion conductivity in new perovskite oxides [AgyLi1–y]3xLa2/3–x□1/3–2xTiO3 (x = 0.09 and 0≤y≤1)[J]. Chem Mater, 2001, 13(5): 1593–1599.
[42]
? MEI A, WANG X L, FENG Y C, et al. Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica [J]. Solid State Ionics, 2008, 179(39): 2255–2259.
[43]
? ANANTHARAMULU N, KOTESWARA RAO K, RAMBABU G., et al. A wide-ranging review on Nasicon type materials [J]. J Mater Sci, 2011, 46(9): 2821–2837.
[44]
? SUBRAMANIAN M A, SUBRAMANIAN R, CLEARFIELD A. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf)[J]. Solid State Ionics, 1986, 18–19(1): 562–569.
[45]
? BRUCE P G., WEST A R. Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes [J]. J Solid State Chem, 1984, 53(3): 430–434.
[46]
? MO Y F, ONG S P, CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material [J]. Chem Mater, 2012, 24(1): 15–17.
[47]
? THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta)[J]. J Am Ceram Soc, 2003, 86(3): 437–440.
[48]
? CUSSEN E J. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors [J]. Chem Comm, 2006(4): 412–413.
[49]
? MURUGAN R, WEPPNER W, SCHMID-BEURMANN P, et al. Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12 [J]. Mater Sci Eng B, 2007, 143(1–3): 14–20.
[50]
? MURUGAN R, WEPPNER W, SCHMID-BEURMANN P, et al. Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12 [J]. Mater Res Bull, 2008, 43(10): 2579–2591.
[51]
? KUWANO J, WEST A R. New Li+ ion conductors in the system, Li4GeO4–Li3VO4 [J]. Mater Res Bull, 1980, 15(11): 1661–1667.
[52]
? XIAO Z.B, CHEN S, GUO M. M. Influence of Li3PO4 addition on properties of lithium ion-conductive electrolyte Li1.3Al0.3Ti1.7(PO4)3 [J]. Trans Nonferrous Met Soc China, 2011, 21(11): 2454–2458.
WU X M, XIAO Z B, MA M Y, et al. Effect of LiBO2 flux on the properties of Li1.3Al0.3Ti1.7(PO4)3 sintered pellet [J]. J Chin Ceram Soc, 2011, 39(2): 329–333.
[55]
? BROUSSE T, FRAGNAUD P, MARCHAND R, et al. All oxide solid-state lithium-ion cells [J]. J Power Sources, 1997, 68: 412–415.
[56]
? KOBAYASHI Y, MIYASHIROA H, TAKEUCHIB T, et al. All-solid- state lithium secondary battery with ceramic/polymer composite electrolyte [J]. Solid State Ionics, 2002, 152–153: 137–142.
[57]
? BIRKE P, SALAM F, DO RING S, et al. A first approach to a monolithic all solidstate inorganic lithium battery [J]. Solid State Ionics, 1999, 118: 149–157.
[58]
? NAGATA K, NANNO T. All solid battery with phosphate compounds made through sintering process [J]. J Power Sources, 2007, 174(2): 832–837.
[59]
? KANNO R, MURAYAMA M, INADA T, et al. A self-assembled breathing interface for all-solid-state ceramic lithium batteries [J]. Electrochem Solid-State Lett, 2004, 7(12): A455–A458.
[60]
? KOBAYASHI T, INADA T, SONOYAMA N, et al. All solid-state batteries using super ionic conductor, thio-lisicon - Electrode electrolyte interfacial design [J]. Mater Res Soc, 2005, 835: K11.1.1–13.
[61]
? KOBAYASHI T, YAMADA A, KANNO R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON [J]. Electrochim Acta, 2008, 53(15): 5045–5050.
[62]
? OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high- rate capability of solid-state lithium batteries by nanoscale interfacial modification [J]. Adv Mater, 2006, 18(17): 2226–2229.
[63]
? OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries [J]. Electrochem Commun, 2007, 9(7): 1486–1490.
[64]
? INADA T, KOBAYASHI T, SONOYAMA N, et al. All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON [J]. J Power Sources, 2009, 194(2): 1085–1088.
[65]
? KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte [J]. J Power Sources, 2008, 182(2): 621–625.