全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同模数对材料热电性能的影响

, PP. 226-232

Keywords: 材料,纳米材料,模数,热电性能,弹道传输

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于玻尔兹曼传输方程和Landauer方程,研究了一定能谱宽度内模数为常数和Guass型分布的热电优值、电导率和功率因子等热电参数的特性,并与模数为Delta型分布的情况进行对比。结果表明,引入能谱宽度后,热电优值有所下降,但是,电导率和功率因子将增加。这种模数会比Delta型更具有实际意义。

References

[1]  Boukai A I, Bunimovich Y, Tahir-Kheli J, et al. Silicon nanowires as efficient thermoelectric materials
[2]  [J]. Nature, 2008, 451: 168-171.
[3]  Linke H, Sheng W, L?fgren A, et al. A quantum dot ratchet: Experiment and theory
[4]  [J]. Europhys. Lett., 1998, 44(3): 341-347.
[5]  Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit
[6]  [J]. Nature, 2001, 413: 597-602.
[7]  Pichanusakorn P, Bandaru P. Nanostructured thermoelectrics
[8]  [J]. Mater. Sci. Eng. R, 2010, 67: 19-63.
[9]  Sanchez D, Lopez R. Scattering theory of nonlinear thermoelectric transport
[10]  [J]. Phys. Rev. Lett. 2013, 110: 026804.
[11]  Whitney R S. Thermodynamic and quantum bounds on nonlinear dc thermoelectric transport
[12]  [J]. Phys. Rev. B, 2013, 87: 115404.
[13]  Mu W D, Cheng H F, Chen Z H, et al. Effect of rough interface on the thermoelectric figure of merit of the Bi2Te3/PbTe superlattice
[14]  [J]. Acta Phys. Sin. (物理学报), 2009, 58(2): 1212-1218 (in Chinese).
[15]  Zhang Y Q, Shi Y, Pu L, et al. Thermoelectric properties of transverse transport in nanowire array structures
[16]  [J]. Acta Phys. Sin. (物理学报), 2008, 57(8): 5198-6204 (in Chinese).
[17]  Zhang L, Singh D J. Electronic structure and thermoelectric properties: PbBi2Te4 and related intergrowth compounds
[18]  [J]. Phys. Rev. B, 2010, 81(24): 245119
[19]  Wang Y, Chen X, Cui T, et al. Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase
[20]  [J]. Phys. Rev. B, 2007, 76(15): 155127.
[21]  Kihou K, Lee C H, Miyazawa K, et al. Thermoelectric properties of LaFeAsO1-y at low temperature
[22]  [J]. J. Appl. Phys., 2010, 108(3): 033703.
[23]  Kaurav N, Wu K K, Kuo Y K, et al. Seebeck coefficient of NaxCoO2: Measurements and a narrow-band model
[24]  [J]. Phys. Rev. B, 2009, 79(7): 075120.
[25]  Chelikowsky J R, Louie S G. Quantum Theory of Real Materials
[26]  [M]. Boston: Kluwer Academic Publishers, 1996: 219–250.
[27]  Humphrey T E, Newbury R, Taylor R P, et al. Reversible Quantum Brownian Heat Engines for Electrons
[28]  [J]. Phys. Rev. Lett., 2002, 89(11): 116801.
[29]  He B X, He J Z. Thermoelectric refrigerator of a double-barrier InAs/InP nanowire hererostructure
[30]  [J]. Acta Phys. Sin. (物理学报), 2010, 59(6): 3846-3850 (in Chinese).
[31]  Mahan G D, Sofo J O. The best thermoelectric
[32]  [J]. Proc. Natl. Acad. Sci., 1996, 93(15): 7436-7439.
[33]  Nag B R. Electron Transport in Compound Semiconductors
[34]  [M]. New York: Springer Press, 1980: 171-229.
[35]  Xuan X C, Ng K C, Yap C, et al. A general model for studying effects of interface layers on thermoelectric devices performance
[36]  [J]. Int. J. Heat. Mass. Transfer., 2002, 45(26): 5159-5170.
[37]  [J]. Phys. Rev. B, 2009, 79(7): 075105.
[38]  An J, Sefat A S, Singh D J, et al. Electronic structure and magnetism in BaMn2As2 and BaMn2Sb2
[39]  Kim R, Datta S, Lundstrom M S. Influence of dimensionality on thermoelectric device performance
[40]  [J]. J. Appl. Phys., 2009, 105(3): 034506.
[41]  Datta S. Quantum Transport: Atom to Transistor
[42]  [M]. 2nd ed. New York: Cambridge University Press, 2005: 11-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133