全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碘代烷烃分子的C-I断键机理研究

, PP. 257-261

Keywords: 光解动力学,碘代烷烃,离子速度成像,共振增强多光子电离,相对量子产率

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用离子速度成像方法对碘代直链烷烃和环烷烃分子在267nm下的光解断键机理进行了研究。实验分析了激发态I*(5p2P1/2)和基态I(5p2P3/2)的离子影像,得到其对应速度、角度分布的各向异性参数值和相对量子产率和。实验发现碘代直链烷烃和环烷烃分子在吸收一个267nm的光子后,都发生快速的断键,直接解离生成激发态I*和基态I原子。与碘代直链烷烃相比,碘代环烷烃分子具有明显不同的角度分布特征,碘代环烷烃分子基态的值大于激发态。并且随着碳原子上所取代的烷基变重,有变小的趋势。

References

[1]  Yung Y L, Pinto J P, et al. Atmospheric Bromine and Ozone Perturbations in the Lower Stratosphere
[2]  [J]. J. Atmos. Sci. 1980, 37:339-353.
[3]  Brewer P, Das P, et al. Measurement of the relative populations of I ( ) and I ( ) by laser induced vacuum ultraviolet fluorescence
[4]  [J]. J. Chem. Phys., 1983, 79: 720-723.
[5]  Tang Y, Ji L, et al. Photodissociation Study of Ethyl Bromide in the Ultraviolet Range by the Ion-Velocity Imaging Technique
[6]  [J]. ChemPhysChem 2005, 6: 2137-2144.
[7]  Liu Y, Butler L J. C-Cl bond fission dynamics and angular momentum recouping in the 235 nm photodissociation of allyl chloride
[8]  [J]. J. Chem. Phys., 2004, 121: 11016-11022.
[9]  张亮,李霞,张诗按,张向韵,邓莉,陈果良,孙真荣,王祖赓. Selective enhancement of coherent anti-stokes raman scattering from dibromomethane by adaptive feedback control
[10]  [J]. Chinese Journal of Quantum Electronics, 2007, 24(6): 694~698 (in chinese)
[11]  Mulliken R S. Intensities in Molecular Electronic Spectra X. Calculations on Mixed-Halogen, Hydrogen Halide, Alkyl Halide, and Hydroxyl Spectra
[12]  [J]. J. Chem. Phys. 1940, 8: 382-395.
[13]  Dura J, Nalda R, et al. Femtosecond Transition-State Imaging of the A-Band CH3I Photodissociation
[14]  [J]. ChemPhysChem, 2008, 9: 1245-1249.
[15]  Eppink A T J B, Parker D H. Energy partition following photodissociation of methyl iodide in the A band: A velocity mapping study
[16]  [J]. J. Chem. Phys. 110 (2): 832-843.
[17]  Tang Y, Lee W B, et al. Productions of I, I*, and C2H 5 in the A-band photodissociation of ethyl iodide in the wavelength range from 245 to 283 nm by using ion-imaging detection
[18]  [J]. J. Chem. Phys., 2007, 126: 064302
[19]  Fan H, Pratt S T. Photoionization of hot radicals: C2H5, n-C3H7, and i-C3H7
[20]  [J]. J. Chem. Phys., 2005, 123: 204301
[21]  Eppink A T J B, Parker D H. Methyl iodide A-band decomposition study by photofragment velocity imaging
[22]  [J]. J. Chem. Phys., 1998, 109:4758-4767.
[23]  Zhang F, Cao Z Z, Qin X, Liu Y Z, Wang Y M, Zhang B. Acta Phys. -Chim. Sin., 2006, 24(8): 1335
[24]  [张? 锋, 曹振洲, 覃? 晓, 刘玉柱, 王艳梅, 张冰. 物理化学学报, 2008, 24(8):
[25]  Donovan R J, Flood R V, et al, The resonance enhanced (2+1) multiphoton ionization spectrum of I2
[26]  [J], Chem. Phys. 1992, 164(3): 439-450
[27]  Riley S J, Wilson K R. Excited fragments from excited molecules: energy partitioning in the photodissociation of alkyl iodides, Faraday Discuss. Chem. Soc., 1972, 53: 132-146.??????????????????????????????????????????????????????????????????
[28]  Kim Y S, Kang W K, et al. Photodissociation of tert-Butyl Iodide at 277 and 304 nm: Evidence for Direct and Indirect Dissociation in A-Band photolysis of Alkyl Iodide
[29]  [J]. J. Phys. Chem. A, 1997,101: 7576-7581.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133