全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

(2+1)维AKNS方程的对称约化和新的非行波精确解

, PP. 678-683

Keywords: 非线性方程,(2+1)维AKNS方程,Lie群方法,扩展同宿测试法,非行波精确解

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用Lie群方法将(2+1)维AKNS方程约化成(1+1)维非线性偏微分方程。对约化方程应用扩展同宿测试法获得了AKNS方程的一些新的非行波精确解,这些结果丰富了该方程的可积性内涵及(2+1)维非线性波传播的动力学行为。

References

[1]  Wang C J, Dai Zh D and Liang L, Exact three-wave solution for higher dimensional KdV-type equation, Appl. Math. Comput. 2010,216:501-505. [2] Dai Zh D, Xian D Q and Li D L, Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimen sional Boussinesq Equation, China. Phys. Lett. 2009, 26(4), 040203:1-3. [3] Darvishi M T and Khani F, Numerical and explicit solutions of the fifth-order. Korteweg-de Vries equations, Chaos, Solitons and Fractals, 2009,39:2484–2490. [4] Abbasbandy S and Darvishi M T, A numerical solution of Burgers’ equation by time discretization of Adomian’s decomposition method, Appl. Math. Comput. 2005,170, 95-120. [5] Darvishi M T, Khani F, Hamedi-Nezhad S and Ryu S W, New modification of the HPM for numerical solutions of the sine-Gordon and coupled sine-Gordon equations, Int. J. Comput. Math. 2010, 87: 908-919. [6] Shin B C, Darvishi M T and Karami A , Application of He's parameter-expansion method to a nonlinear self-excited oscillator system, Int.J.Nonlin. Sci. Num. Simul. 2009,10: 137-143. [7] He J H and Abdou M A, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos, Solitons and Fractals,2007, 34: 1421-1429. [8] Darvishi M T and Najai M , A Modification of Extended Homoclinic Test Approach to Solve the (3+1)-Dimen sional Potential-YTSF Equation, Chin. Phys. Lett.2011, 28, 040202:1-4. [9] Mohammad N, Maliheh N and Darvishi M T, New Exact Solutions to the (2+1)D AKNS Equation: Modification of the Extended Homoclinic Test Approach, Chin. Phys. Lett. 2012, 29(4), 040202:1-4. [10] Abdul-Majid Wazwaz, The Tanh-coth and the Sine-cosine methods for kinks, solitons, and periodic solutions for the Pochhammer-Chree equations, Appl. Math. Comput. 2008,195: 24-33. [11] Polver P J, Application of Lie Groups to Differential Equations Berlin: Springer; 1986. [12]Wang Ting-ting, Liu Xi-qiang, Yu Jin-qian.Symmetries, exact solutions of and conservation lows of Caudrey-Dodd-Gibbon-Kotera-Sawada equation [J].Chinese Journal of Quantum Electronics (量子电子学报),2011,28:385-390(in Chinese). [13]Cao Jie,Liu Xiqiang,Guo Meiyu.New solutions and conservation lows of the (3+1)-dimensional nonlinear evolution equations [J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26:16-22(in Chinese). [14]Xu Bin,et al.Symmetry reduction and invariable solutions of the (2+1)-dimensional Cardner equation [J]Chinese Journal of Quantum Electronics (量子电子学报),2009,26:531-536(in Chinese). [15] Xian D Q, Chen H L, Symmetry Reduced and New Exact Non-traveling Wave Solutions of Potential Kadomtsev-Petviashvili Equation with p-Power, Appl. Math. Comput. 216(2010)70-79. [16] Wang Ling, Xian Da-quan, Homoclinic Breather-Wave Solutions Periodic-Wave Solutions and Kink Solitary-Wave Solutions for CDGKS Equations, [J].Chinese Journal of Quantum Electronics,2012,29:417-420(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133