全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于高阶辛算法的纳米器件本征问题仿真

, PP. 340-347

Keywords: 量子光学,辛积分,时域有限差分,薛定谔方程,纳米器件本征问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究精确和高效的数值方法是现代纳米器件建模和优化的重要目标之一,而分析大部分纳米器件特性的切入点是确定器件结构的能量本征值和能量本征态。本文提出了一种新的算法—高阶辛时域有限差分法(SFDTD(3,4)symplecticfinite-differencetime-domain)求解含时薛定谔方程。在时间上采用三阶辛积分格式离散,空间上采用四阶精度的同位差分格式离散,建立了求解含时薛定谔方程的高阶辛时域有限差分算法。将高阶辛算法SFDTD(3,4)用于一维量子阱中盒中粒子和谐振子的仿真中,实验结果表明SFDTD(3,4)法比传统的时域有限差分算法以及高阶时域有限差分算法更加准确,适用于对纳米器件本征问题的长时间仿真。

References

[1]  Soriano A., Navarro E.A., Porti J.A., Such V., Analysis of the finite difference time domain technique to solve the Schrodinger equation for quantum devices
[2]  [J], J. Appl. Phys., 2004, 95 8011-8018.
[3]  Sullivan D.M., Citrin D.S., Determining quantum eigenfunctions in three-dimensional nanoscale structures
[4]  [J], J. Appl. Phys., 2005, 97(10): 104305 - 104305-6.
[5]  文舸一, 1999,辛算法及其在电磁场方程中的应用
[6]  [J],微波学报, 15(1): 68 - 78. K. Y. Wen, Symplectic algorithm and its application in the electromagnetic field equations
[7]  [J], Microwave Journal, 1996, 15(1):68-78.
[8]  冯康,等, 2003,哈密尔顿系统的辛几何算法
[9]  [M],杭州:浙江科学技术出版社, 358 - 359. K. Feng, Symplectic algorithm in Hamilton system
[10]  [M], Zhejiang Science and Technology Publishing House: 358-359.
[11]  G. B. Ren and J. M. Rorison, Eigenvalue problem of the Schrodinger equation via the finite-difference time-domain method
[12]  [J], Physical Review E, 2004,69: 036705-1-4
[13]  Hanquan Wang, Numerical studies on the split-step finite difference method for nonlinear Schrodinger equations
[14]  [J], Applied Mathematics and Computation, 2005, 170: 17–35
[15]  简荣华, 赵翠兰,半导体量子阱中强耦合磁极化子的性质
[16]  [J], 量子电子学报,2010, 27 (4): 485–490. H. R. Jan, C. L. Zhao,The property of strong coupling magnetopolaron in semicoductor quantum wells, Chinese Journal of quantum electronics, 2010, 27(4):485-490.
[17]  Joe Y.S., Satanin A.M., Kim C.S., Classical analogy of Fano resonances
[18]  [J], Phys. Scr., 2006, 74 :259-266.
[19]  Datta S., Quantum Transport: Atom to Transistor
[20]  [M], Cambridge University Press, 2005, New York.
[21]  Griffiths D.J., Introduction to Quantum Mechanics
[22]  [M], Second Edition Addison-Wesley, 2004, Boston.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133