全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

(2+1)维PotentialBoiti-Leon-Manna-Pempinelli方程的对称、约化和精确解

, PP. 533-540

Keywords: 经典李群法,PBLMP方程,对称,约化,精确解  

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用经典李群法得到了(2+1)维PotentialBoiti-Leon-Manna-Pempinelli(简称PBLMP)方程的对称、约化,通过解约化方程得到了该方程的一些精确解,包括有理函数解,双曲函数解,三角函数解,Jacobi椭圆函数解.

References

[1]  Abdel-All N H, Abdel-Razek M A A, Seddeek A A K. Expanding the Tanh-Function Method for Solving Nonlinear Equations[J]. Applied Mathematics, 2011, 2(9). [2] Parkes E J. Observations on the tanh–coth expansion method for finding solutions to nonlinear evolution equations[J]. Applied Mathematics and Computation, 2010, 217(4): 1749-1754. [3]He Y, Li S, Long Y. A improved F‐expansion method and its application to Kudryashov–Sinelshchikov equation[J]. Mathematical Methods in the Applied Sciences, 2013. [4] Dimitrova Z I. Discussion on exp-function method and modified method of simplest equation[J]. arXiv preprint arXiv:1303.0122, 2013. [5] Bhrawy A H, Abdelkawy M A, Biswas A. Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4): 915-925. [6] Wang Mingliang. Exact solutions for a compound KdV-Burgers equation[J]. Physics Letters A, 1996, 213(5): 279-287. [7]Zhang Y Y, Wang G W, Liu X Q. Symmetry reductions and explicit solutions of the (2+1)-dimensional nonlinear evolution equation [J]. Chinese Journal of Quantum Electromics (量子电子学报), 2012, 29: 411-416(in Chinese). 张颖元,刘希强,王岗伟. (2+1)维非线性发展方程的对称约化和显式解[J].量子电子学报,2012,29(2): 411-416. [8]Chen M,Liu X Q,Wang M. Exact solutions and conservation laws of symmetric regularized long wave equations [J]. Chinese Journal of Quantum Electromics (量子电子学报), 2011, 29(5): 21-26 (in Chinese). 陈美,刘希强,王猛. Symmetric Regularized Long Wave(SRLW)方程组的对称,精确解和守恒律. 量子电 子学报,2012, 29(1): 21-26. [9]Molati, Motlatsi, and Chaudry Masood Khalique. Symmetry classification and invariant solutions of the variable coefficient BBM equation[J]. Applied Mathematics and Computation, 2013, 219(15): 7917-7922. [10] Chao-Qing, Dai, and Zhou Guo-Quan. Exotic interactions between solitons of the (2+ 1)-dimensional asymmetric Nizhnik–Novikov–Veselov system[J]. Chinese Physics, 2007, 16(5): 1201. [11]Wang Ling, Dong Zhong-Zhou, and Liu Xi-Qiang.Symmetry Reductions, Exact Solutions and Conservation Laws of Asymmetric Nizhnik–Novikov–Veselov Equation[J]. Communications in Theoretical Physics, 2008, 49(1): 1. [12] Estévez P G, Leble S. A wave equation in 2+ 1: Painlevé analysis and solutions[J]. Inverse Problems, 1995, 11(4): 925. [13] Tang, Xiao-yan, Lou Sen-yue , and Zhang Ying . Localized excitations in (2+ 1)-dimensional systems[J]. Physical Review E, 2002, 66(4): 046601. [14] Lou Sen-yue, Tang Xiao-yan. Methods of Nonlinear Mathematical Physics, Beijing Science Press of China, Beijing, China, 2006. [15] Liu N, Liu X Q. Symmetries, new exact solutions and conservation laws of (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation [J]. Chinese Journal of Quantum Electromics (量子电子学报), 2008, 25(5): 546-552 (in Chinese). 刘娜,刘希强. (2+1)维Boiti-Leon-Manna-Pempinelli方程的对称、精确解及守恒律[J]. 量子电子学报,2008, 25(5): 546-552. [16]Shi L M, Zhang L F, Meng H, et al. A method to construct Weierstrass elliptic function solution for nonlinear equations[J]. International Journal of Modern Physics B, 2011, 25(14): 1931-1939. [17]Adem A R, Khalique C M. Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(9): 3465-3475. [18] Moleleki L D, Johnpillai A G, Khalique C M. Symmetry Reductions and Exact Solutions of a Variable Coefficient (2+ 1)-Zakharov-Kuznetsov Equation[J]. Mathematical and Computational Applications, 2012, 17(2): 132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133